首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地质学   1篇
海洋学   1篇
自然地理   1篇
  2010年   1篇
  1999年   1篇
  1995年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
A study of normal faults in the Nubian Sandstone Sequence, from the eastern Gulf of Suez rift, has been conducted to investigate the relationship between the microstructure and petrophysical properties of cataclasites developed along seismic-scale faults (slip-surface cataclasites) and smaller displacement faults (deformation bands) found in their damage zones. The results help to quantify the uncertainty associated with predicting the fluid flow behaviour of seismic-scale faults by analysing small faults recovered from core, a common procedure in the petroleum industry. The microstructure of the cataclasites was analysed as well as their single-phase permeability and threshold pressure. Faulting occurred at a maximum burial depth of ∼1.2 km. The permeability of deformation band and slip-surface cataclasites varies over ∼1.5 orders of magnitude for a given fault. Our results suggest that the lowest measured deformation band permeabilities provide a good estimate for the arithmetic-mean permeability of the major slip-surface cataclasites. This is because the cataclastic permeability reduction is mostly established early in the deformation history. Stress at the time of faulting rather than final strain appears to be the critical factor determining fault rock permeability. For viable predictions it is important that the slip-surface cataclasites and deformation bands originate from the same host. On the other hand, a higher uncertainty is associated with threshold pressure predictions, as the arithmetic-mean slip-surface cataclasite threshold pressure exceeds the highest measured deformation band threshold pressure by at least a factor of 4.  相似文献   
2.
Ford  Lickorish  & Kusznir 《Basin Research》1999,11(4):315-336
Tertiary foreland sedimentation in SE France occurred along the western sidewall of the Alpine orogen during collision of the Apulian indentor with the European passive margin. A detailed reappraisal of the stratigraphy and structure of the Southern Subalpine Chains (SSC) in SE France shows that Tertiary depocentres of differing character developed progressively toward the foreland during ongoing SW-directed shortening. The geodynamic controls on each of four stages of basin development are evaluated using a flexural isostatic modelling package of thrust sheet emplacement and foreland basin formation. (1) The initial stage (mid to late Eocene) can be explained as a flexural basin that migrated toward the NW, closing off to the SW against the uplifting Maures–Esterel block. This broad, shallow basin can be reproduced in forward modelling by loading a lower lithospheric plate with an effective elastic thickness of 20 km. (2) The end of detectable flexural subsidence in the early Oligocene coincides with the emplacement of the internally derived Embrunais–Ubaye (E-U) nappes, which caused 11 km of SW-directed shortening in the underlying SSC. The lack of Oligocene flexural subsidence dictates that the E-U units were emplaced as gravitational nappes. Within the SSC, Oligocene sedimentation was restricted to small thrust-sheet-top basins recording mainly continental conditions and ongoing folding. Further west, Oligocene to Aquitanian NNW–SSE extension generated the Manosque half-graben as part of the European graben system that affected an area from the Gulf of Lion to the Rhine graben. (3) Following the Burdigalian breakup of the Gulf of Lion rift, a marine transgression migrated northward along the European graben system. Subsequent thermal subsidence allowed 1 km of marine sediments to be deposited across the Valensole and Manosque blocks, west of the active SSC thrust belt. (4) Mio-Pliocene conglomeratic deposits (2 km thick) were trapped within the Valensole basin by the uplifting Vaucluse block to the west and the advancing Alpine thrust sheets to the east. Late Pliocene thrusting of the SSC across the Valensole basin (approx. 10.5 km) can be linked along a Triassic detachment to the hinterland uplift of the Argentera basement massif.  相似文献   
3.
Sequence stratigraphy in marine foredeep and thrust-top basins is controlled by the conventional variations in eustatic sea-level and sedimentation rate together with tectonics. Vertical motions reflect combinations of subsidence due to regional flexure and uplift on local thrust anticlines which act to modify the volume and shape of accommodation space together with syn-depositional slopes. Plio-Pleistocene successions on Sicily were deposited in thrust-top and foredeep basins, above and ahead of evolving structures of the Maghrebian fold and thrust belt. Collectively the sediments represent a single megasequence defined at its base by a maximum flooding surface of earliest Pliocene age following reconnection with global sea-level at the end of the Messinian. The internal stratigraphy of this megasequence consists of Trubi chalks, blue marls and a coastal calcarenite package with subordinate silciclastic sand. Plankton biostratigraphy allows these facies to be placed in a chronostratigraphic framework. Regionally the upper assemblage progrades away from the orogenic hinterland, recording a tectonically forced regression in response to regional uplift from late Pliocene times. This uplift may be associated with isostatic unloading in the orogenic hinterland due to tectonic collapse of the more internal thrust sheets. Prior to this, flexure from orogenic loading is inferred to have been sufficient for regional subsidence locally to outstrip uplift associated with the growth of some thrust structures. For shallow-water facies the competition between thrust-related uplift and flexural subsidence can be investigated from the stacking patterns of parasequence sets. For structures developed at greater palaeobathymetries receiving fine-grained pelagic sediment, active tectonics may be recognized from depositional hiatuses.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号