首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地质学   2篇
自然地理   1篇
  2020年   1篇
  2009年   1篇
  2006年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.

Bétaré-Oya is one of the gold mining districts in the eastern region of Cameroon. Structural controls on gold mineralization were examined along the Bétaré-Oya Shear Zone, providing further clues on favorable areas for mineral exploration. GIS-based methods combining point pattern (i.e., quadrat count, Fry analysis) and distance distribution analysis were employed here to delineate the spatial patterns of known gold deposits and to evaluate their spatial association with geological structures. Results show that the gold deposits in this area are spatially clustered. At the regional scale, the Fry plot indicates an alignment of deposits, suggesting that gold mineralization is controlled by structures oriented NNE–SSW and NE–SW. At the deposit scale, an alignment is also evident, indicating that the mineralization is also controlled by ENE–WSW-trending structures. The cumulative relative frequency distribution of distances from lineament features to gold occurrence points (DM) and to non-occurrence points (DN) ratio (DM/DN) was used to rank these two major structural trends and their relative importance as mineralization control. The yielded grades show that NE–SW-trending lineaments, akin to P-type structures, play a major role in controlling the gold mineralization in the area compared to other structures. Beyond the goal to foster mineral prospection in the Bétaré-Oya gold district, information yielded in the present study provides relevant criteria for further exploration in the eastern region of Cameroon.

  相似文献   
2.
Field, microstructural, and anisotropy of magnetic susceptibility (AMS) or magnetic fabric studies were applied to identify the sequence and character of the Pan-African structures in the basement of Eastern Cameroon at both sides of the regional scale Bétaré-Oya Shear Zone (BOSZ). The NE-SW trending BOSZ separates older gneisses and migmatites towards SE (domain I) from the younger rocks of the Lom meta-volcano-sedimentary basin towards NW (domain II). In domain I, early, ductile compressional deformation occurred in two events, D1 and D2, under relatively high T conditions. During subsequent cooling, strain partitioned between the competent basement gneisses with only mild compression and the bordering shear zone (BOSZ) with intense simple shear-wrenching (D3). Strain in the less competent rocks of domain II is dominated by simple shear, strike-slip wrenching (D3), with an earlier stage of compressional deformation preserved only in some low strain pods.Magnetic fabrics (AMS) document a progressive change from oblate ellipsoids towards prolate ellipsoids in domain I, when proceeding from the south towards the BOSZ. Foliations are mostly steep but define a girdle with a pole plunging gently towards WSW. The magnetic lineations also plunge mostly towards WSW at shallow angles. These fabrics indicate a compression approximately normal to the BOSZ, which is also the SE margin of the Lom Basin. In the Lom metasediments (domain II), AMS ellipsoids are typically oblate. Foliations trend NE-SW with mostly steep dips. Magnetic lineations plunge gently NE or SW. This fabric with foliations mostly steep and subparallel with the major BOSZ, combined with generally subhorizontal lineations implies the BOSZ as a Pan-African strike–slip shear zone with a subordinate component of compression.At a larger scale, the area is part of a continent-scale shear zone, separating external Pan-African domains of compression along the northern margin of the Congo craton from internal domains dominated by high-angle strike–slip and transpressional deformation. Together with published data, the present study thus demonstrates that transpression is a regional phenomenon in the Pan-African orogen of central and eastern Cameroon.  相似文献   
3.
Rutile, as an important component in alluvial or eluvial heavy mineral deposits, is known in southern Cameroon. These deposits are underlain by the Neoproterozoic low- to high-grade Yaoundé Group. Geochemical, thermometric, fluid inclusion and Pb isotopic studies of the rutile from alluvial and eluvial concentrates and from medium-grade micaschist from the nearby Yaoundé region permit the following conclusions: (1) alluvial and eluvial rutile of the Yaoundé region are derived from the degradation of metapelites, metamafic rocks and pegmatites of the nearby Yaoundé Group; (2) rutile in the Yaoundé Group formed during the Pan-African metamorphism, or was inherited as detrital rutile from a 900 Ma source. The study also shows that the rutile can be used to trace the history of the Pan-African belt north of the Congo craton.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号