首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1963篇
  免费   74篇
  国内免费   23篇
测绘学   84篇
大气科学   152篇
地球物理   705篇
地质学   681篇
海洋学   153篇
天文学   136篇
综合类   11篇
自然地理   138篇
  2022年   12篇
  2021年   25篇
  2020年   49篇
  2019年   34篇
  2018年   60篇
  2017年   51篇
  2016年   80篇
  2015年   71篇
  2014年   69篇
  2013年   115篇
  2012年   89篇
  2011年   117篇
  2010年   101篇
  2009年   122篇
  2008年   100篇
  2007年   71篇
  2006年   67篇
  2005年   45篇
  2004年   42篇
  2003年   51篇
  2002年   31篇
  2001年   50篇
  2000年   31篇
  1999年   36篇
  1998年   30篇
  1997年   29篇
  1996年   23篇
  1995年   19篇
  1994年   17篇
  1993年   12篇
  1992年   18篇
  1990年   18篇
  1989年   16篇
  1988年   19篇
  1987年   12篇
  1986年   21篇
  1985年   23篇
  1984年   18篇
  1983年   26篇
  1982年   21篇
  1981年   18篇
  1980年   15篇
  1979年   18篇
  1978年   13篇
  1977年   14篇
  1976年   13篇
  1975年   17篇
  1973年   14篇
  1972年   10篇
  1969年   9篇
排序方式: 共有2060条查询结果,搜索用时 0 毫秒
1.
2.
Sediment successions in coastal cliffs around Mezen Bay, southeastern White Sea, record an unusually detailed history of former glaciations, interstadial marine and fluvial events from the Weichselian. A regional glaciation model for the Weichselian is based on new data from the Mezen Bay area and previously published data from adjacent areas. Following the Mikulinian (Eemian) interglacial a shelf‐centred glaciation in the Kara Sea is reflected in proglacial conditions at 100–90 ka. A local ice‐cap over the Timan ridge existed between 75 and 65 ka. Renewed glaciation in the Kara Sea spread southwestwards around 60 ka only, interrupted by a marine inundation, before it advanced to its maximum position at about 55–50 ka. After a prolonged ice‐free period, the Scandinavian ice‐sheet invaded the area from the west and terminated east of Mezen Bay about 17 ka. The previously published evidence of a large ice‐dammed lake in the central Arkhangelsk region, Lake Komi, finds no support in this study. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
3.
Sediment proxy records from a continuous, 1.5 million year long deep‐sea sediment core from a site in the western Norwegian Sea were used to obtain new insights into the nature of palaeoceanographic change in the northern North Atlantic (Nordic seas) during the climatic shift of the Mid‐Pleistocene Revolution (MPR). Red‐green sediment colour and magnetic susceptibility records both reveal significant differences in their mean values when comparing the intervals older than 700 000 yr (700 ka) with those from the past 500 kyr. The timing and duration of these changes indicates that the MPR in the Nordic seas is characterised by a gradual transition lasting about 200 kyr. Together with further sedimentological evidence this suggests that the mid‐Pleistocene climate shift was accompanied by a general change in ice‐drift pattern. It is further proposed that prior to the onset of the major late Pleistocene glaciations in the Northern Hemisphere a significant proportion of the ice in the eastern Nordic seas originated from a southern provenance, whereas later it dominantly came from the surrounding landmasses. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
4.
A lacustrine carbonate sequence from Hawes Water, Lancashire, UK, has been studied using stable isotopic, lithological, pollen and mineral magnetic analysis. The data reveal four abrupt climatic oscillations in the Late‐glacial Interstadial leading up to the onset of the Loch Lomond Stadial. The data also point to climatic warming relatively early within the stadial, ca. 12 500 GRIP yr, prior to the onset of the Holocene. The oxygen isotope record is taken as a signature of climate forcing against which the response of the lake‐system can be monitored. By adopting this approach it is revealed that the response of the biological system to the rapid climatic oscillations is non‐linear and primarily a function of the antecedent conditions. A significant end‐Devensian isotopic excursion (A) is matched by only minor changes in the cold‐adapted floras and faunas. During the warmer interstadial, the response of the biological ecosystem (events B–D) is clearly influenced by thresholds: major changes in the catchment vegetation associated with relatively minor oscillations in the isotopic signature. The stratigraphical patterns reveal significant lag effects between the onset of climate deterioration and resulting changes in vegetation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
5.
6.
Mass-spectrometric stable isotope measurements of CO2 use molecular ion currents at mass-to-charge ratios m/z 44, 45 and 46 to derive the elemental isotope ratios n(13C)/n(12C) and n(18O)/n(16O), abbreviated 13C/12C and 18O/16O, relative to a reference. The ion currents have to be corrected for the contribution of 17O-bearing isotopologues, the so-called ‘17O correction’. The magnitude of this correction depends on the calibrated isotope ratios of the reference. Isotope ratio calibrations are difficult and are therefore a matter of debate. Here, I provide a comprehensive evaluation of the existing 13C/12C (13R), 17O/16O (17R) and 18O/16O (18R) calibrations of the reference material Vienna Standard Mean Ocean Water (VSMOW) and CO2 generated from the reference material Vienna Pee Dee Belemnite (VPDB) by reaction with 100% H3PO4 at 25 °C (VPDB-CO2). I find , 18RVSMOW/10−6 = 2005.20 ± 0.45, 13RVPDB-CO2/10-6= 11124 ± 45, and 18RVPDB-CO2/10-6=2088.37±0.90. I also rephrase the calculation scheme for the 17O correction completely in terms of relative isotope ratio differences (δ values). This reveals that only ratios of isotope ratios (namely, 17R/13R and 13R17R/18R) are required for the 17O correction. These can be, and have been, measured on conventional stable isotope mass spectrometers. I then show that the remaining error for these ratios of isotope ratios can lead to significant uncertainty in the derived relative 13C/12C difference, but not for18O/16O. Even though inter-laboratory differences can be corrected for by a common ‘ratio assumption set’ and/or normalisation, the ultimate accuracy of the 17O correction is hereby limited. Errors of similar magnitude can be introduced by the assumed mass-dependent relationship between 17O/16O and 18O/16O isotope ratios. For highest accuracy in the 13C/12C ratio, independent triple oxygen isotope measurements are required. Finally, I propose an experiment that allows direct measurement of 13R17R/18R.  相似文献   
7.
The polyphasal magmatic evolution of the Caledonian Karmøy Ophiolite Complex includes: (1) formation of an axis sequence from island-arc tholeiitic (IAT) and more MORB-like magmas (493+7/-4 Ma); (2) intrusion of magmas of boninitic affinity (485±2 Ma); (3) intrusion of MORB- and IAT-like magmas; (4) intrusion and extrusion of calc-alkaline magmas (470+9/-5 Ma); (5) intrusion and extrusion of basalts with alkaline trace-element affinity. Repeated intrusion of MORB and IAT-like magmas may be explained by intermittent magmatism involving magma-chamber solidification and remelting of a source characterized by initial Nd of approximately +6.5. The boninitic rocks may have formed from two LREE-depleted sources: the primary source of the axis-sequence magmas and the residual source left after extraction of these magmas. These sources have been enriched in LREE, Th and Zr from subducted material exhibiting a continental Nd-isotope signature with initial Nd less than-8. Covariation between Nd and Th, Zr, Nd, Y and Yb may be explained by metasomatic enrichment of a LREE-depleted mantle source by a LREE-enriched subduction component, followed by partial melting during which the degree of melting of the metasomatized mantle source increased linearly with the amount of subduction component added to the mantle source. The calc-alkaline magmas may have formed by remelting of a highly depleted source, which became enriched in some trace elements derived from the source of the subsequent alkaline magmatism. The geology and geochemistry of the Karmøy Ophiolite Complex suggest growth of an island-arc upon newly-formed oceanic crust, followed by arc-splitting and the development of a new basin.  相似文献   
8.
9.
10.
By compiling wide-angle seismic velocity profiles along the 400-km-long Lofoten–Vesterålen continental margin off Norway, and integrating them with an extensive seismic reflection data set and crustal-scale two-dimensional gravity modelling, we outline the crustal margin structure. The structure is illustrated by across-margin regional transects and by contour maps of depth to Moho, thickness of the crystalline crust, and thickness of the 7+ km/s lower crustal body. The data reveal a normal thickness oceanic crust seaward of anomaly 23 and an increase in thickness towards the continent–ocean boundary associated with breakup magmatism. The southern boundary of the Lofoten–Vesterålen margin, the Bivrost Fracture Zone and its landward prolongation, appears as a major across-margin magmatic and structural crustal feature that governed the evolution of the margin. In particular, a steeply dipping and relatively narrow, 10–40-km-wide, Moho-gradient zone exists within a continent–ocean transition, which decreases in width northward along the Lofoten–Vesterålen margin. To the south, the zone continues along the Vøring margin, however it is offset 70–80 km to the northwest along the Bivrost Fracture Zone/Lineament. Here, the Moho-gradient zone corresponds to a distinct, 25-km-wide, zone of rapid landward increase in crustal thickness that defines the transition between the Lofoten platform and the Vøring Basin. The continental crust on the Lofoten–Vesterålen margin reaches a thickness of 26 km and appears to have experienced only moderate extension, contrasting with the greatly extended crust in the Vøring Basin farther south. There are also distinct differences between the Lofoten and Vesterålen margin segments as revealed by changes in structural style and crustal thickness as well as in the extent of elongate potential-field anomalies. These changes may be related to transfer zones. Gravity modelling shows that the prominent belt of shelf-edge gravity anomalies results from a shallow basement structural relief, while the elongate Lofoten Islands belt requires increased lower crustal densities along the entire area of crustal thinning beneath the islands. Furthermore, gravity modelling offers a robust diagnostic tool for the existence of the lower crustal body. From modelling results and previous studies on- and off-shore mid-Norway, we postulate that the development of a core complex in the middle to lower crust in the Lofoten Islands region, which has been exhumed along detachments during large-scale extension, brought high-grade, lower crustal rocks, possibly including accreted decompressional melts, to shallower levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号