首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
地球物理   4篇
自然地理   2篇
  2018年   1篇
  2016年   2篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有6条查询结果,搜索用时 62 毫秒
1
1.
In this study, a scheme is presented to estimate groundwater storage variations in Iran. The variations are estimated using 11 years of Gravity Recovery and Climate Experiments (GRACE) observations from period of 2003 to April 2014 in combination with the outputs of Global Land Data Assimilation Systems (GLDAS) model including soil moisture, snow water equivalent, and total canopy water storage. To do so, the sums of GLDAS outputs are subtracted from terrestrial water storage variations determined by GRACE observations. Because of stripping errors in the GRACE data, two methodologies based on wavelet analysis and Gaussian filtering are applied to refine the GRACE data. It is shown that the wavelet approach could better localize the desired signal and increase the signal‐to‐noise ratio and thus results in more accurate estimation of groundwater storage variations. To validate the results of our procedure in estimation of ground water storage variations, they are compared with the measurements of pisometric wells data near the Urmia Lake which shows favorable agreements with our results.  相似文献   
2.
In this study, a scheme to estimate oceanic and hydrological effects in the GRACE (Gravity Recovery and Climate Experiment) data is presented. The aim is to reveal tectonic signals for the case of the Sumatra earthquake on 26 December 2004. The variations of hydrological and oceanic effects are estimated with the aid of data set of GRACE, altimetry, World Ocean Atlas, and the GLDAS model for a period of January 2003 to December 2006. The time series of computed gravity changes over Sumatra region show some correlations to the deformation resulting from the earthquake occurred in December 2004. The maximum and minimum impacts of hydrological and oceanic effects on gravity changes are about 3 μGal in radial direction and–5 μGal in northward direction. The maximum and minimum amounts of gravitational gradient changes after the correction are 0.2 and–0.25 mE, which indicates the significant influences of hydrological and oceanic sources on the desired signal.  相似文献   
3.
The nature of the transition between the Zagros intra-continental collision and the Makran oceanic subduction is a matter of debate: either a major fault cutting the whole lithosphere or a more progressive transition associated with a shallow gently dipping fault restricted to the crust. Microearthquake seismicity located around the transition between the transition zone is restricted to the west of the Jaz-Murian depression and the Jiroft fault. No shallow micro-earthquakes seem to be related to the NNW–SSE trending Zendan–Minab–Palami active fault system. Most of the shallow seismicity is related either to the Zagros mountain belt, located in the west, or to the NS trending Sabzevaran–Jiroft fault system, located in the north. The depth of microearthquakes increases northeastwards to an unusually deep value (for the Zagros) of 40 km. Two dominant types of focal mechanisms are observed in this region: low-angle thrust faulting, mostly restricted to the lower crust, and strike-slip at shallow depths, both consistent with NS shortening. The 3-D inversion of P traveltimes suggests a high-velocity body dipping northeastwards to a depth of 25 km. This high-velocity body, probably related to the lower crust, is associated with the deepest earthquakes showing reverse faulting. We propose that the transition between the Zagros collision and the Makran subduction is not a sharp lithospheric-scale transform fault associated with the Zendan–Minab–Palami fault system. Instead it is a progressive transition located in the lower crust. The oblique collision results in partial partitioning between strike-slip and shortening components within the shallow brittle crust because of the weakness of the pre-existing Zendan–Minab–Palami faults.  相似文献   
4.
5.
Surface wave dispersion curves from microearthquakes are used to obtain group velocity dispersion maps. The calculation of the local dispersion curves for each grid point from these maps then produces the input data to retrieve the 3D shear wave velocity model of the Tehran region. The group velocity maps indicate that the tomographic results agree well with the three main tectonic features and the geological units in the study area. The tomographic maps generally possess high-velocity structures across most of the mountain belts (Central Alborz and east-southeast mountains), whereas the Tehran Basin correlates to a low-velocity structure. Increasing the period in the study area highlights four independent low-velocity zones that reflect faults and fault junction systems. The shear wave velocity profiles indicate that the depth to bedrock exhibits southward variation ranging from ~?300 m to ~?1500 m. We also focus our analysis on the existence of faults within the shear wave profiles and discuss the low shear wave velocity anomalies deeper than 2 km result from the main fault structures (e.g., North Tehran, North-South Rey and Parchin). Furthermore, we argue that the dip angle of the North Tehran fault varies along fault strike, whereas the North-South Rey fault possesses a constant dip angle. Moreover, initial model uncertainties and checkerboard resolution tests are used to identify reliable and robust anomaly features in the 3D shear wave velocity model and 2D tomographic maps, respectively. Microearthquake analysis provides an effective approach for studying the upper crustal structure heterogeneity, especially the fault structure, of the Tehran region.  相似文献   
6.
The 28 February, 2006 Tiab earthquake (Mw 6.0), is the first earthquake to have occurred in the transition zone between the Zagros continental collision and the Makran subduction zone for which the aftershock sequence is recorded by a temporary local seismic network. The epicentral distribution of the aftershocks is diffuse and we cannot define a simple alignment at the surface. The depth of the aftershocks increases gently northward and they are primarily concentrated between 15 and 21 km depth, implying a deeper seismogenic layer than the Zagros. Very low-angle thrust faulting deduced from this local study supports thrusting of the Arabian plate beneath central Iran at the southeastern end of the Zagros as suggested previously based on teleseismic data. The focal mechanism of the main shock indicates a thrust mechanism similar to that of other strong earthquakes in this region, while most of the focal mechanisms of the aftershocks are dominantly strike-slip. We propose that the strike-slip mechanisms belong to right-lateral fault systems that accommodate differential motion at the transition between the Zagros collision zone and the Makran subduction zone. If so, this suggests that the convergence between Arabia and central Iran is at present accommodated along the transition zone by a partitioning process.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号