首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地球物理   4篇
自然地理   1篇
  2021年   1篇
  2014年   2篇
  2013年   1篇
  1984年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
2.
The city of Oran is exposed to a significant seismic hazard, as almost all the northern Algeria territory, where numerous casualties and severe damage occurred in the last decades due to several moderate to large earthquakes. A mitigation policy should include the establishment of priorities to reduce the vulnerability of existing buildings based on the knowledge of the actual urban fabrics. The complexity of vulnerability assessment requires a gradual approach from the urban scale to the building scale. The study reported in this paper corresponds to the first step of such an approach, i.e., a preliminary study of the seismic vulnerability and expected damage within an urban district of the city of Oran, based on a non-dedicated data base from a building survey previously performed for other purposes. The main goals of this study are twofold: (1) an assessment of the degree of uncertainty and robustness of such results through a comparison of the results derived from different urban vulnerability methods (GNDT 2; RISK-UE LM1; and VULNERALP 2.0) and (2) an assessment of the actual level of seismic risk in the city of Oran. Cross-method comparisons and correlations highlight a satisfactory agreement between mean damage estimates at the urban scale, despite significant scattering at the single building scale, and uncertainty levels which vary significantly from one method to the other. For a given scenario, the three methods provide damage estimates lying within half an EMS damage degree of one another, with some systematic positive bias for VULNERALP and negative bias for RISK-UE LM1, especially for masonry buildings. The expected mean damage is very important for intensities 9 and 10, with an average damage grade around 3–4 for intensity 9 and 4–5 for intensity 10. The spatial distribution of damage systematically exhibits larger values in the northern, older, commercial area, than in the southern, more recent and more residential area, in relation to the building typology and the existence of several aggravating factors. Some areas of higher vulnerability / damage can be distinguished, which should receive particular attention for retrofitting priorities or urban planning decisions, also taking into account their cultural heritage value.  相似文献   
3.
When dealing with structural damages, under the effect of natural hazards such as earthquakes, it is still a scientific challenge to predict the potential damages, before occurrence of a given hazard, as well as to evaluate the damages once the earthquake has occurred. In the present study, two distinct methods addressing these topics are developed. Thousands (~54,000) of existing buildings damaged during the Boumerdes earthquake that occurred in Algeria (Mw?=?6.8, May 21, 2003) are considered in order to study their accuracy and sensitivity. Once an earthquake has occurred, quick evaluations of the damages are required in order to distinguish which structures should be demolished or evacuated immediately from those which can be kept in service without evacuation of its inhabitants. For this purpose, visual inspections are performed by trained and qualified engineers. For the case of Algeria, an evaluation form has been developed and is still in use since the early 80s: Five categories of damages are considered (no damage or very slight, slight, moderate, major, and very severe/collapse). This paper develops a theoretical methodology that processes the observed damages caused to the structural and nonstructural components (foundations, roofs, slabs, walls, beams, columns, fillings, partition walls, stairways, balconies, etc.), in order to help the evaluator to derive the global damage evaluation. This theoretical methodology transforms the damage category into a corresponding “residual” risk of failure ranging from zero (no damage) to one (complete damage). The global failure risk, in fact its corresponding damage category, is then derived according to given combinations of probabilistic events in order to express the influence of any component on the global damage and behavior. The method is calibrated on a set of ~54,000 buildings inspected after Boumerdes earthquake. Almost 80 % of accordance (same damage category) is obtained, when comparing the theoretical results to the observed damages. For pre-earthquake analysis, the methodology widely used around the world relies on the prior calibration of the seismic response of the structures under given expected scenarios. As the structural response is governed by the constitutive materials and structural typology as well as the seismic input and soil conditions, the damage prediction depends intimately on the accuracy of the so-called fragility curve and response spectrum established for each type of structure (RC framed structures, confined or unconfined masonry, etc.) and soil (hard rock, soft soil, etc.). In the present study, the adaptation to Algerian buildings concerns the specific soil conditions as well as the structural dynamic response. The theoretical prediction of the expected damages is helpful for the calibration of the methodology. Thousands (~3,700) of real structures and the damages caused by the earthquake (Algeria, Boumerdes: Mw?=?6.8, May 21, 2003) are considered for the a posteriori calibration and validation process. The theoretical predictions show the importance of the elastic response spectrum, the local soil conditions, and the structural typology. Although the observed and predicted categories of damage are close, it appears that the existing form used for the visual damage inspection would still require further improvements, in order to allow easy evaluation and identification of the damage level. These methods coupled to databases, and GIS tools could be helpful for the local and technical authorities during the post-earthquake evaluation process: real time information on the damage extent at urban or regional scales as well as the extent of losses and the required resources for reconstruction, evacuation, strengthening, etc.  相似文献   
4.
Located at the North-Eastern part of Algeria (Tellian Atlas), Constantine has crucial administrative, economic, scientific and cultural importance. It has continuously experienced significant urban evolutions during the different periods of its history. The city is located in an active seismic region within Algeria and has been struck in the past by several moderate and strong earthquakes. The strongest earthquake recorded since the beginning of instrumental seismology took place on October 27, 1985 with a magnitude M \(_\mathrm{S}=\) 5.9. Constantine presents a high seismic risk, because of its dense housing and high population density (2,374 inhabitants/km \(^{2})\) . This requires a risk assessment in order to take preventive measures and reduce the losses in case of potential major earthquake. For this purpose, a scenario based approach is considered. The building damage assessment methodology adopted for the Algerian context is adapted from HAZUS approach. In the present case, the effective Algerian seismic code response spectrum (RPA 99/2003) is considered as a seismic hazard model. The prediction of the expected damages is performed for a set of almost 29,000 buildings.  相似文献   
5.
Natural Resources Research - Accurate prediction of pore-pressures in the subsurface is paramount for successful planning and drilling of oil and gas wellbores. It saves cost and time and helps to...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号