首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地质学   2篇
自然地理   2篇
  2021年   1篇
  2019年   1篇
  2013年   1篇
  2009年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
In mineral resource evaluation a careful analysis and assessment of the geology, assay data and structural data is required. One important question is where to position the exploration boreholes, another is what method to use when analyzing the grade in the collected material. Here, a challenge of this type is whether one should analyze the collected core samples with accurate and expensive lab equipment or a simpler hand-held meter. A dataset of about 2000 oxide observations is available, along with relevant explanatory variables, from a deposit in Norway. A Gaussian geostatistical model is used to predict the grade parameter on block support. To improve the predictions, several new boreholes are planned, giving 265 additional samples. The associated uncertainty reduction is evaluated, and a resource evaluation is performed with and without the planned data. Then the value of information of the planned data is computed, using assumed costs, recovery rates and revenues. The data acquired with the hand-held meter has almost the same value as the more expensive acquisition strategy, given that the already established correlation between the two datasets is valid.  相似文献   
2.
Stability is a key issue in any mining or tunnelling activity. Joint frequency constitutes an important input into stability analyses. Three techniques are used herein to quantify the local and spatial joint frequency uncertainty, or possible joint frequencies given joint frequency data, at unsampled locations. Rock quality designation is estimated from the predicted joint frequencies. The first method is based on kriging with subsequent Poisson sampling. The second method transforms the data to near-Gaussian variables and uses the turning band method to generate a range of possible joint frequencies. The third method assumes that the data are Poisson distributed and models the log-intensity of these data with a spatially smooth Gaussian prior distribution. Intensities are obtained and Poisson variables are generated to examine the expected joint frequency and associated variability. The joint frequency data is from an iron ore in the northern part of Norway. The methods are tested at unsampled locations and validated at sampled locations. All three methods perform quite well when predicting sampled points. The probability that the joint frequency exceeds 5 joints per metre is also estimated to illustrate a more realistic utilisation. The obtained probability map highlights zones in the ore where stability problems have occurred. It is therefore concluded that the methods work and that more emphasis should have been placed on these kinds of analyses when the mine was planned. By using simulation instead of estimation, it is possible to obtain a clear picture of possible joint frequency values or ranges, i.e. the uncertainty.  相似文献   
3.
Natural Resources Research - Minerals and metals are of uttermost importance in our society, and mineral resources on and beneath the deep ocean floor represent a huge potential. Deciding whether...  相似文献   
4.

The potential for mining hydrothermal mineral deposits on the seafloor, such as seafloor massive sulfides, has become technically possible, and some companies (currently not many) are considering their exploration and development. Yet, no present methodology has been designed to quantify the ore potential and assess the risks relative to prospectivity at prospect and regional scales. Multi-scale exploration techniques, similar to those of the play analysis that are used in the oil and gas industry, can help to fulfill this task by identifying the characteristics of geologic environments indicative of ore-forming processes. Such characteristics can represent a combination of, e.g., heat source, pathway, trap and reservoir that all dictate how and where ore components are mobilized from source to deposition. In this study, the understanding of these key elements is developed as a mineral system, which serves as a guide for mapping the risk of the presence or absence of ore-forming processes within the region of interest (the permissive tract). The risk analysis is carried out using geoscience data, and it is paired with quantitative resource estimation analysis to estimate the in-place mineral potential. Resource estimates are simulated stochastically with the help of available data (bathymetric features in this study), conventional grade–tonnage models and Monte Carlo simulation techniques. In this paper, the workflow for a multi-scale quantitative risk analysis, from the definition to the evaluation of a permissive tract and related prospect(s), is described with the help of multi-beam data of a known hydrothermal vent site.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号