首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
  国内免费   3篇
地质学   4篇
天文学   23篇
自然地理   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2012年   3篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2007年   3篇
  2005年   4篇
  2004年   3篇
  2003年   1篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
1.
The undulating, warped, and densely fractured surfaces of highland regions east of Valles Marineris (located north of the eastern Aureum Chaos, east of the Hydraotes Chaos, and south of the Hydaspis Chaos) resulted from extensional surface warping related to ground subsidence, caused when pressurized water confined in subterranean caverns was released to the surface. Water emanations formed crater lakes and resulted in channeling episodes involved in the excavation of Ares, Tiu, and Simud Valles of the eastern part of the circum-Chryse outflow channel system. Progressive surface subsidence and associated reduction of the subsurface cavernous volume, and/or episodes of magmatic-driven activity, led to increases of the hydrostatic pressure, resulting in reactivation of both catastrophic and non-catastrophic outflow activity. Ancient cratered highland and basin materials that underwent large-scale subsidence grade into densely fractured terrains. Collapse of rock materials in these regions resulted in the formation of chaotic terrains, which occur in and near the headwaters of the eastern circum-Chryse outflow channels. The deepest chaotic terrain in the Hydaspis Chaos region resulted from the collapse of pre-existing outflow channel floors. The release of volatiles and related collapse may have included water emanations not necessarily linked to catastrophic outflow. Basal warming related to dike intrusions, thermokarst activity involving wet sediments and/or dissected ice-enriched country rock, permafrost exposed to the atmosphere by extensional tectonism and channel incision, and/or the injection of water into porous floor material, may have enhanced outflow channel floor instability and subsequent collapse. In addition to the possible genetic linkage to outflow channel development dating back to at least the Late Noachian, clear disruption of impact craters with pristine ejecta blankets and rims, as well as preservation of fine tectonic fabrics, suggest that plateau subsidence and chaos formation may have continued well into the Amazonian Period. The geologic and paleohydrologic histories presented here have important implications, as new mechanisms for outflow channel formation and other fluvial activity are described, and new reactivation mechanisms are proposed for the origin of chaotic terrain as contributors to flooding. Detailed geomorphic analysis indicates that subterranean caverns may have been exposed during chaos formation, and thus chaotic terrains mark prime locations for future geologic, hydrologic, and possible astrobiologic exploration.  相似文献   
2.
Remote sensing observations by recent successful missions to small bodies have revealed the difficulty in classifying the materials which cover their surfaces into a conventional classification of meteorites. Although reflectance spectroscopy is a powerful tool for this purpose, it is influenced by many factors, such as space weathering, lighting conditions, and surface physical conditions (e.g., particle size and style of mixing). Thus, complementary information, such as elemental compositions, which can be obtained by X‐ray fluorescence (XRF) and gamma‐ray spectrometers (GRS), have been considered very important. However, classifying planetary materials solely based on elemental compositions has not been investigated extensively. In this study, we perform principal component and cluster analyses on 12 major and minor elements of the bulk compositions of 500 meteorites reported in the National Institute of Polar Research (NIPR), Japan database. Our unique approach, which includes using hierarchical cluster analysis, indicates that meteorites can be classified into about 10 groups purely by their bulk elemental compositions. We suggest that Si, Fe, Mg, Ca, and Na are the optimal set of elements, as this set has been used successfully to classify meteorites of the NIPR database with more than 94% accuracy. Principal components analysis indicates that elemental compositions of meteorites form eight clusters in the three‐dimensional space of the components. The three major principal components (PC1, PC2, and PC3) are interpreted as (1) degree of differentiations of the source body (i.e., primitive versus differentiated), (2) degree of thermal effects, and (3) degree of chemical fractionation, respectively.  相似文献   
3.
One of the many significant findings of the Mars Global Surveyor mission is the presence of hundreds of quasi-circular depressions (QCDs) observed from high-resolution MOLA topography data. Their presence has recently been interpreted to reflect a northern lowlands that archive some of the earliest recorded rocks on Mars, mostly below a veneer of Hesperian and Amazonian materials. Here we analyze these data, coupled with a recent synthesis of geologic, geophysical, geomorphic, topographic, and magnetic information. Such analysis allows us to suggest a potential plate tectonic phase during the recorded Early into Middle Noachian martian history that transitioned into a monoplate world with episodic magmatic-driven activity persisting to present. This working hypothesis is based on: (1) the observation that the basement of the northern plains is younger than the basement of the southern highlands, but older than the material exposures of the cratered highlands, suggesting different formational ages for each one of the three geologic-time units; (2) the observation that parts of the very ancient highland's crust are highly magnetized, thus suggesting that most if not all of the formation of the lowlands basement postdates the shut off of the martian dynamo, some 4 Gyr ago, and so allowing hundreds of millions of years for the shaping of the buried lowlands. Consequently, the role of endogenic processes in the earliest geological evolution of Mars (Early perhaps into Middle Noachian) requires reconsideration, since MOLA topographic and MGS magnetic data afford a temporal window sufficient for very early, non-primordial shaping of the northern lowlands' basement.  相似文献   
4.
Extensional and compressional structures are globally abundant on Mars. Distribution of these structures and their ages constrain the crustal stress state and tectonic evolution of the planet. Here in this paper, we report on our investigation over the distribution of the tectonic structures and timings of the associated stress fields from the Noachis-Sabaea region. Thereafter, we hypothesize possible origins in relation to the internal/external processes through detailed morphostructural mapping. In doing so, we have extracted the absolute model ages of these linear tectonic structures using crater size-frequency distribution measurements, buffered crater counting in particular. The estimated ages indicate that the tectonic structures are younger than the mega impacts events(especially Hellas) and instead they reveal two dominant phases of interior dynamics prevailing on the southern highlands, firstly the extensional phase terminating around3.8 Ga forming grabens and then compressional phase around 3.5-3.6 Ga producing wrinkle ridges and lobate scarps. These derived absolute model ages of the grabens exhibit the age ca. 100 Ma younger than the previously documented end of the global extensional phase. The following compressional activity corresponds to the peak of global contraction period in Early Hesperian. Therefore, we conclude that the planet wide heat loss mechanism, involving crustal stretching coupled with gravitationally driven relaxation(i.e.,lithospheric mobility) resulted in the extensional structures around Late Noachian(around 3.8 Ga). Lately cooling related global contraction generated compressional stress ensuing shortening of the upper crust of the southern highlands at the Early Hesperian period(around 3.5-3.6 Ga).  相似文献   
5.
Different lines of evidence point to hydrological cycling in the martian past. The extent, duration, and magnitude of this cycling remains unclear, as well as the magnitude of aqueous processes on the surface. Here, we provide geomorphic and mineralogic evidence of a large inter-crater sedimentary basin located in the Terra Sirenum region, which was once covered by a body of liquid water with an areal extent of at least 30,000 km2 and a depth of approximately 200 m. The topographic basin, which is modified by a number of large impact craters, is partly controlled by ancient impact and tectonic structures. As a result of evaporation of the large body of water, salt flats formed in the lowest topographic reaches of the basin. Hydrated phyllosilicates occur in close proximity to the salt flats and in the ejecta and rim materials of small impact craters with stratigraphic relations that suggest that they underlie the evaporite deposits. Crater statistics place the maximum age of aqueous activity during the Late Noachian epoch. The relatively pristine mineral deposits in the basin have a high potential to yield information of the geochemistry and water activity during the ancient Noachian Period when conditions were seemingly more conducive to life.  相似文献   
6.
We discuss in this paper possible roles of methane and carbon dioxide in geological processes on Mars. These volatiles in the martian crust may migrate upward from their sources either directly or via various traps (structural, sedimentary, ground ice, gas hydrates). They are then likely emitted to the atmosphere by seepage or through diverse vent structures. Though gas hydrates have never been directly detected on Mars, theoretical studies favor their presence in the crust and polar caps; they could have played an important role as significant gas reservoirs in the subsurface. The martian gas hydrates would possibly be a binary system of methane and carbon dioxide occupying clathrate cavities. Landforms such as mud volcanoes with well-known linkage to gas venting are extensively distributed on Earth, and methane is the primary gas involved. Thus, identification of these landforms on Mars could suggest that methane and possibly carbon dioxide have contributed to geological processes of the planet. For example, we present a newly identified field in Chryse Planitia where features closely resembling terrestrial mud volcanoes occur widely, though with no observable activity. We also present results of a preliminary search for possible recent or present-day, methane-emission zones in the regions over which enrichments of atmospheric methane have been reported.  相似文献   
7.
Next-generation robotic planetary reconnaissance missions: A paradigm shift   总被引:1,自引:1,他引:0  
A fundamentally new scientific mission concept for remote planetary surface and subsurface reconnaissance will soon replace the engineering and safety constrained mission designs of the past, allowing for optimal acquisition of geologic, paleohydrologic, paleoclimatic, and possible astrobiologic information of Mars and other extraterrestrial targets. Traditional missions have performed local ground-level reconnaissance through rovers and immobile landers, or global mapping performed by an orbiter. The former is safety and engineering constrained, affording limited detailed reconnaissance of a single site at the expense of a regional understanding, while the latter returns immense datasets, often overlooking detailed information of local and regional significance. A “tier-scalable” paradigm integrates multi-tier (orbitatmosphereground) and multi-agent (orbiterblimpsrovers/sensorwebs) hierarchical mission architectures, not only introducing mission redundancy and safety, but enabling and optimizing intelligent, unconstrained, and distributed science-driven exploration of prime locations on Mars and elsewhere, allowing for increased science return, and paving the way towards fully autonomous robotic missions.  相似文献   
8.
Bolide impacts on Mars, within the proposed ocean boundaries (“contacts 1 and 2”) in the northern lowlands, would certainly have generated ultra high energy waves similar to tsunamis on Earth. Impacts into putative Noachian and Hesperian seas of variable areal extents and depths would have experienced high-energy inundations (transgressions), which would have left an imprint in the stack of deposits adjacent to the proposed shorelines. On Earth, the principal influencing factors for tsunami-wave energy are the character of shoreline topography and coastal water depth, which control wave compression and shoreline friction. Shorelines with narrow embayments and steep offshore gradients produce wave compression and increased collision of grains within the carried load contrasted with linear shorelines and shallow offshore gradients that dissipate energy. Steep offshore gradients produce concentrated major wave friction with the bed engendering high kinetic energy in the wave during emplacement of tsunami-generated sediment, which differs from shallow offshore beds that produce lower frictional effects over a wider area and drawdown of wave energy. Thus, overprinting of transported quartz grains on Earth is greatest where wave energy is highest, attenuated down to minor or nil overprinting where wave energy is less. Such grain overprinting in the form of energy-induced microtextures would also be observed in other grain types such as olivine and plagioclase, as such mineralogies are expected to dominate the Martian landscape based on orbital and local field (lander and rover) perspectives. Kinetic energy variation in tsunamis is controlled more by the square of velocity than mass, the resulting collisional effects of which produce swarms of v-shaped percussion microfeatures on quartz and other silicate mineral surfaces when velocity and compression are highest. This work indicates that a valid test for the ocean hypothesis is targeting “coastal” areas adjacent to narrow embayments where offshore depths are known to be highest, as possible tsunami-emplaced sediments, especially those that have been protected from atmospheric conditions through relatively rapid burial, may reveal a high frequency of percussion cracks, features of which appear to be unique to such terrestrial environments.  相似文献   
9.
http://www.sciencedirect.com/science/article/pii/S1674987114000267   总被引:6,自引:6,他引:0  
Habitable Trinity is a newly proposed concept of a habitable environment.This concept indicates that the coexistence of an atmosphere(consisting largely of C and N),an ocean(H and O).and a landmass(supplier of nutrients) accompanying continuous material circulation between these three components driven by the Sun is one of the minimum requirements for life to emerge and evolve.The life body consists of C,0,H,N and other various nutrients,and therefore,the presence of water,only,is not a sufficient condition.Habitable Trinity environment must be maintained to supply necessary components for life body.Our Habitable Trinity concept can also be applied to other planets and moons such as Mars,Europa,Titan,and even exoplanets as a useful index in the quest for life-containing planetary bodies.  相似文献   
10.
Throughout the recorded history of Mars, liquid water has distinctly shaped its landscape, including the prominent circum-Chryse and the northwestern slope valleys outflow channel systems, and the extremely flat northern plains topography at the distal reaches of these outflow channel systems. Paleotopographic reconstructions of the Tharsis magmatic complex reveal the existence of an Europe-sized Noachian drainage basin and subsequent aquifer system in eastern Tharsis. This basin is proposed to have sourced outburst floodwaters that sculpted the outflow channels, and ponded to form various hypothesized oceans, seas, and lakes episodically through time. These floodwaters decreased in volume with time due to inadequate groundwater recharge of the Tharsis aquifer system. Martian topography, as observed from the Mars Orbiter Laser Altimeter, corresponds well to these ancient flood inundations, including the approximated shorelines that have been proposed for the northern plains. Stratigraphy, geomorphology, and topography record at least one great Noachian-Early Hesperian northern plains ocean, a Late Hesperian sea inset within the margin of the high water marks of the previous ocean, and a number of widely distributed minor lakes that may represent a reduced Late Hesperian sea, or ponded waters in the deepest reaches of the northern plains related to minor Tharsis- and Elysium-induced Amazonian flooding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号