首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
地球物理   2篇
地质学   3篇
自然地理   2篇
  2011年   1篇
  2006年   1篇
  2002年   1篇
  1998年   1篇
  1993年   2篇
  1986年   1篇
排序方式: 共有7条查询结果,搜索用时 7 毫秒
1
1.
The colonisation of the land by plants and the origin of vascular plants were events that changed the face of our planet and are as captivating to the imagination as they are controversial. The plants themselves were morphologically very simple and their fossils lack the aesthetic appeal of the famous fronds of the Coal Measures, yet quite remarkable cellular detail can be observed at the microscopic level.  相似文献   
2.
Previous studies of radiation from point sources in fluid-filled boreholes have most often been based on far-field, stationary phase analysis. In these papers, the explicit contribution of the borehole itself acting as a waveguide has not been properly considered, with a few exceptions. In general, these studies accurately describe S-wave radiation in high-velocity rocks such as granites and limestones and P-wave radiation in most rocks, and experiments have confirmed this. However, tube waves directly influence the external wavefield and in fact create a shear-wave ‘wake’ outside the borehole due to constructive interference of tube-wave emission if a velocity condition is met. This constructive interference or wake is generated when the tube-wave velocity is greater than the shear-wave velocity. When this happens, a tube-wave complex pole invalidates the mathematical assumptions for stationary phase analysis and the stationary phase predictions do not agree with experimentally derived radiation patterns. Shales at shallow depths and other soft sediments characteristically have tube-wave velocities greater than shear-wave velocities. Because the tube-wave is of relatively high amplitude compared to body waves generated directly by the source, these secondary shear waves can be the highest amplitude arrivals on receiver arrays. The shape and properties of these secondary shear waves are calculated and shown to have identical properties to Mach waves of aerodynamics and seismology. For instance, these waves are geometrically conical and the aperture of the cone and the moveout velocity can be calculated. This paper also demonstrates the important effect that casing has on the Mach waves and provides predictions about when these waves are likely to be observed. Finally, evidence of Mach waves in data sets is examined and it is shown how these waves have been confused with receiver borehole tube waves. It is possible, though rare, that the tube-wave velocity of the borehole is greater than the compressional-wave velocity of the surrounding medium. In this case secondary compressional or compressional Mach waves would be generated although this problem is not addressed here.  相似文献   
3.
Supervised classification of digital Landsat satellite images was used to locate seabird nesting habitats in the Russian High Arctic archipelago of Franz Josef Land, a region where the avifauna is poorly known and ecologically vulnerable. Major seabird nesting colonies are readily identifiable in Landsat Thematic Mapper (TM) imagery of the region due primarily to the distinctive spectral signature of vegetation on ornithogenically altered soils below bird cliffs. Supervised image classification was used to pinpoint areas displaying spectral characteristics typical of documented seabird nesting habitats. A total of 101 seabird nesting colony locations identified in Russian and Western literature from 1898 to 1996 was used as training sites to develop spectral signatures from a summer TM image mosaic for use in a supervised maximum likelihood classification. The classified image was thresholded and compared to a map of documented nesting locations. Of the 101 field-documented nesting sites, 96 were clearly identified in the classified image. An inventory was produced of all undocumented seabird habitats suggested by the classification, totalling over 300 sites. The methodology used may be applicable to other arctic regions and is intended as a first step when planning ecological protection zones in remote and inaccessible arctic regions.  相似文献   
4.
5.
6.
Surface exposure dating, using in situ produced cosmogenic 10Be, is applied to determine the time since deglaciation of bedrock surfaces in the Grimsel Pass region. Nine 10Be dates from bedrock surfaces corrected for cover by snow are minimum ages for deglaciation of the pass. Four 10Be dates from surfaces below 2500 meters above sea level (m a.s.l.) on Nägelisgrätli, east of Grimsel Pass, yield ages that range from about 14 000 to 11 300 years. Three 10Be dates from locations above 2600 m a.s.l. on Nägelisgrätli are between about 11 700 and 10 400 years. Two 10Be dates from locations at 2560 m a.s.l. below Juchlistock are about 12 100 and 11 000 years. The geographical distribution of 10Be dates on Nägelisgrätli either may show the timing of progressive deglaciation of Grimsel Pass or may reflect differences in subglacial erosion of bedrock in the pass region. All dates are discussed in the context of deglaciation of the late Würmian Alpine ice cap and deglaciation from Last Glacial Maximum (LGM) ice extents in other regions.  相似文献   
7.
In order to evaluate potential effects of tectonics and climate change on the behaviour of the axial Rio Grande in the Rio Grande rift, a 16·5 km stretch of modern floodplain and Holocene terraces were mapped in the tectonically active Palomas half graben, south‐central New Mexico, USA. In addition, 51 cores and natural exposures were logged and 20 radiocarbon dates were obtained from charcoal, bulk organic matter, mollusc shells and pedogenic calcite. The Holocene alluvium comprises four terraces above the modern floodplain, each of which formed by a period of river incision followed by stability and renewed floodplain construction to a level below that of the previous terraces. Estimated times of incision between Terraces I and II, II and III, and III and IV are after 12 400, 8040 to 5310, and 760 to 550 yr bp , respectively, whereas the incision between Terrace IV and the modern floodplain occurred within the last 260 years. Although there is some evidence for tectonic control on river behaviour in the southern part of the basin, terrace formation is interpreted as being related to climate change, with periods of incision corresponding to times of increased aridity and low sediment/water discharge ratio in the Rio Grande. This process may have resulted from a reduction in intensity and magnitude of summer storms which supply sediment to the axial river, coupled with an increase in spring discharge peak caused by snowmelt in upstream mountain catchments.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号