首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
大气科学   1篇
地球物理   18篇
地质学   7篇
自然地理   1篇
  2015年   2篇
  2014年   3篇
  2012年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2005年   3篇
  2004年   2篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1990年   1篇
排序方式: 共有27条查询结果,搜索用时 31 毫秒
1.
Since a state law issued in 1989, every big town in Colombia has to promote its own preparedness programme for disaster relief in the framework of the Oficina Nacional para la Atencion de Desastres (1987). Such a programme includes a very detailed hazard-zone map for flooding and debris flows in the densely inhabited suburbs of Ibagué city (capital of Tolima Department), as well as enquiries about risk knowledge and consciousness among people who live at high risk. We stress the fact that both detailed hazard-zone maps and enquiries should be closely undertaken at the same time, and that distinguishing previous knowledge, existing consciousness and risk perception to forecast the behaviour of people and of the community in case of disaster, are criteria for a better risk assessment.  相似文献   
2.
Using data from glacial geomorphology, tephra–soil stratigraphy and mineralogy, palynology, and radiocarbon dating, a sequence of glacial and bioclimatic stades and interstades has been identified for the last ca. 50000 yr in the Ruiz-Tolima massif, Cordillera Central, Colombia. Six Pleistocene cold stades separated by warmer interstades occurred: before 48000, between 48000 and 33000, between 28000 and 21000, from ≥16000 to ca. 14000, ca. 13000–12400, and ca. 11000–10000 yr BP. Although these radiocarbon ages are minimum-limiting ages obtained from tephra layers on top of tills, the tills are not significantly older because most are bracketed by dated tephra sets in measured stratigraphic sections. Two minor moraine stages likely reflect glacier standstill during cold intervals ca. 7400 yr BP and slightly earlier. Finally, glaciers readvanced between the seventeenth and nineteenth centuries. In contrast to the ice-clad volcanoes of the massif, ca. 34 km2 in area above an altitude of ca. 4800 m, the ice cover expanded to 1200 km2 during the Last Glacial Maximum (LGM) and was still 800 km2 during Late-glacial time (LGT). Glacier reconstructions based on the moraines suggest depression of the equilibrium line altitude (ELA) by ca. 1100 m during the LGM and 500–600 m during LGT relative to the modern ELA, which lies at ca. 5100 m in the Cordillera Central. Glaciers in this region apparently reached their greatest extent when the climate was cold and wet, e.g. during stades corresponding to Oxygen Isotope Stage 3; glaciers were still expanding during the LGM ca. 28000–21000 yr BP, but they shrank considerably after 21000 yr BP because of greatly reduced precipitation. © 1997 John Wiley & Sons, Ltd.  相似文献   
3.
Erosion processes on active volcanoes in humid climates result in some of the highest sediment yields on Earth. Episodic sediment yields after large eruptions have been evaluated, but not the long-term and continuous patterns on persistently active volcanoes. We have used high-spatial resolution satellite imagery and DEMs/DSMs along with field-based geologic mapping to assess accurately sediment budgets for the active Semeru Volcano in Java, Indonesia. Patterns of aggradation and degradation on Semeru differ from that of other active volcanoes because (1) both episodic pyroclastic density currents (PDC) and continuous supplies of tephra generate pulses of sediment, (2) sediment is transferred via cycles of aggradation and degradation that continue for >15 years in river channels after each PDC-producing eruption, and (3) rain-triggered lahars remove much greater material than fluvial transport during long, intense rainfall events. The geomorphic response of two of Semeru’s rivers to volcanic sediment migration indicates that (1) each river experiences alternating aggradation and degradation cycles following PDC-producing eruptions and (2) spatial patterns of sediment transfer are governed by geomorphic characteristics of the river reaches. Usually high degradation in the steep source reach is followed by a long bypassing middle reach. Aggradation predominates in the depositional reaches further down valley on the ring plain. Average sediment yields (103–105 t/km2/year) at persistently active volcanoes are two to three orders of magnitude lower than sediment yields after large and infrequent eruptions, but the continuous and steady sediment transfer in rivers removes more sediment on a mid-term (10 years) to long-term (30 years) basis. In contrast to the trend observed on composite cones after large and infrequent eruptions, decay of sediment yields is not exponential and river channels do not fully recover at steadily active volcanoes as episodic inputs from BAF eruptions, superimposed on the background remobilization of daily tephra, have a greater cumulative effect.  相似文献   
4.
We present multi-parameter geophysical measurements of rainfall-induced lahars at Semeru Volcano, East Java, using two observation sites 510 m apart, 11.5 km from the summit. Our study site in the Curah Lengkong channel is composed of a 30-m wide box-valley, with a base of gravel and lava bedrock, representing an ideal geometry for high density measurements of active lahars. Instrumentation included pore-pressure sensors (stage), a broad-band seismograph (arrival times, vibrational energy, and turbulence), video footage, and direct bucket sampling. A total of 8 rainfall-induced lahars were recorded, with durations of 1–3 h, heights 0.5–2 m, and peak velocities 3–6 m/s. Flow types ranged from dilute to dense hyperconcentrated flows. These recorded flows were commonly composed of partly coalesced, discrete and unsteady gravity current packets, represented by multiple peaks within each lahar. These packets most likely originate from multiple lahar sources, and can be traced between instrument sites. Those with the highest concentrations and greatest wetted areas were often located mid-lahar at our measured reach, accelerating towards the flow front. As these lahars travel downstream, the individual packets thus coalesce and the flow develops a more organised structure. Observations of different degrees of coalescence between these discrete flow packets illustrate that a single mature debris flow may have formed from multiple dynamically independent lahars, each with different origins.  相似文献   
5.
The November 13, 1985, eruption was characteristic of the Arenas eruptive stage of Nevado del Ruiz, the most recent of a series of twelve eruptive stages that have occurred in the past 11,000 years. Eruptive sequences, deposits and processes similar to that of 1985 have characterized the behavior of Nevado del Ruiz during three major prehistorical and historical eruptive stages: the approximately 3300-3100 yr. B.P. Hedionda, the 16th century Azufrado, and the mid-1800's Lagunillas eruptive stages, that partly destroyed the present Ruiz summit.According to the interpretation of the stratigraphic record of prehistorical eruptions and historical accounts, almost every recent magmatic event was small or short-lived. Nevertheless, rockslide-debris avalanches and catastrophic debris flows were triggered in all the eruptions owing to slope failures related to specific tectonic features of Ruiz volcano and/or to significant interactions between pyroclastic debris and the ice cap. Evidence for headward retreat of avalanche scarps during multiple eruptions reinforce the case that large slope failures can occur repeatedly at a large-volume volcano like Ruiz without reconstruction of the edifice. The latest Ruiz eruptions that involved rockslide-debris avalanches resemble in part the Shiveluch 1964 event for which evidence of lateral blast deposits are lacking, but differ in part from this type because non-eruptive and mass-wasting processes also triggered rockslide-debris avalanches.Many factors render the cluster of domes of the Ruiz summit unstable, including: (1) deeply dissected troughs opened toward the north-northeast (Azufrado), east (Lagunillas), and south (Recio) flanks; (2) strongly hydrothermally altered north and east flanks of the summit; (3) currently glaciated or recently deglaciated, high cliffs; (4) steep unstable margins of the ice cap on the north and east.Thus, in light of its past behavior, a small eruption or an earthquake might trigger catastrophic rockslide-debris avalanches. Furthermore, such avalanches as well as glacial outburst-floods and ice avalanches could induce debris flows by mobilizing weathered, water-saturated, and unconsolidated rocks or deposits.  相似文献   
6.
Minor centres in the Central Volcanic Zone (CVZ) of the Andes occur in different places and are essential indicators of magmatic processes leading to formation of composite volcano. The Andahua–Orcopampa and Huambo monogenetic fields are located in a unique tectonic setting, in and along the margins of a deep valley. This valley, oblique to the NW–SE-trend of the CVZ, is located between two composite volcanoes (Nevado Coropuna to the east and Nevado Sabancaya to the west). Structural analysis of these volcanic fields, based on SPOT satellite images, indicates four main groups of faults. These faults may have controlled magma ascent and the distribution of most centres in this deep valley shaped by en-echelon faulting. Morphometric criteria and 14C age dating attest to four main periods of activity: Late Pleistocene, Early to Middle Holocene, Late Holocene and Historic. The two most interesting features of the cones are the wide compositional range of their lavas (52.1 to 68.1 wt.% SiO2) and the unusual occurrence of mafic lavas (olivine-rich basaltic andesites and basaltic andesites). Occurrence of such minor volcanic centres and mafic magmas in the CVZ may provide clues about the magma source in southern Peru. Such information is otherwise difficult to obtain because lavas produced by composite volcanoes are affected by shallow processes that strongly mask source signatures. Major, trace, and rare earth elements, as well as Sr-, Nd-, Pb- and O-isotope data obtained on high-K calc-alkaline lavas of the Andahua–Orcopampa and Huambo volcanic province characterise their source and their evolution. These lavas display a range comparable to those of the CVZ composite volcanoes for radiogenic and stable isotopes (87Sr/86Sr: 0.70591–0.70694, 143Nd/144Nd: 0.512317–0.512509, 206Pb/204Pb: 18.30–18.63, 207Pb/204Pb: 15.57–15.60, 208Pb/204Pb: 38.49–38.64, and δ 18O: 7.1–10.0‰ SMOW), attesting to involvement of a crustal component. Sediment is absent from the Peru–Chile trench, and hence cannot be the source of such enrichment. Partial melts of the lowermost part of the thick Andean continental crust with a granulitic garnet-bearing residue added to mantle-derived arc magmas in a high-pressure MASH [melting, assimilation, storage and homogenisation] zone may play a major role in magma genesis. This may also explain the chemical characteristics of the Andahua–Orcopampa and Huambo magmas. Fractional crystallisation processes are the main governors of magma evolution for the Andahua–Orcopampa and Huambo volcanic province. An open-system evolution is, however, required to explain some O-isotopes and some major and trace elements values. Modelling of AFC processes suggests the Charcani gneisses and the local Andahua–Orcopampa and Huambo basement may be plausible contaminants.  相似文献   
7.
8.
Book reviews     
  相似文献   
9.
Lahars (volcanic debris flows) have been responsible for 40% of all volcanic fatalities over the past century. Mount Semeru (East Java, Indonesia) is a persistently active composite volcano that threatens approximately one million people with its lahars and pyroclastic flows. Despite their regularity, the behaviour and the propagation of these rain‐triggered lahars are poorly understood. In situ samples were taken from lahars in motion at two sites in the Curah Lengkong River, on the southeast flank of Semeru, providing estimates of the particle concentration, grain size spectrum, grain density and composition. This enables us to identify flow sediment from three categories of lahars: (a) hyperconcentrated flow, (b) non‐cohesive, clast‐ and matrix‐supported debris flow, and (c) muddy flood. To understand hyperconcentrated flow sediment transport processes, it is more appropriate to sample the active flows than the post‐event lahar deposits because in situ sampling retains the full spectrum of the grain‐size distribution. Rheometrical tests on materials sampled from moving hyperconcentrated flows were carried out using a laboratory vane rheometer. Despite technical difficulties, results obtained on the <63, <180, and <400 µm fractions of the sampled sediment, suggest a purely frictional behaviour. Importantly, and contrary to previous experiments conducted with monodisperse suspensions, our results do not show any transition towards a viscous behaviour for high shear rates. These data provide important constraints for future physical and numerical modelling of lahar flows. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
10.
Long-term multi-hazard assessment for El Misti volcano (Peru)   总被引:1,自引:1,他引:0  
We propose a long-term probabilistic multi-hazard assessment for El Misti Volcano, a composite cone located <20 km from Arequipa. The second largest Peruvian city is a rapidly expanding economic centre and is classified by UNESCO as World Heritage. We apply the Bayesian Event Tree code for Volcanic Hazard (BET_VH) to produce probabilistic hazard maps for the predominant volcanic phenomena that may affect c.900,000 people living around the volcano. The methodology accounts for the natural variability displayed by volcanoes in their eruptive behaviour, such as different types/sizes of eruptions and possible vent locations. For this purpose, we treat probabilistically several model runs for some of the main hazardous phenomena (lahars, pyroclastic density currents (PDCs), tephra fall and ballistic ejecta) and data from past eruptions at El Misti (tephra fall, PDCs and lahars) and at other volcanoes (PDCs). The hazard maps, although neglecting possible interactions among phenomena or cascade effects, have been produced with a homogeneous method and refer to a common time window of 1 year. The probability maps reveal that only the north and east suburbs of Arequipa are exposed to all volcanic threats except for ballistic ejecta, which are limited to the uninhabited but touristic summit cone. The probability for pyroclastic density currents reaching recently expanding urban areas and the city along ravines is around 0.05 %/year, similar to the probability obtained for roof-critical tephra loading during the rainy season. Lahars represent by far the most probable threat (around 10 %/year) because at least four radial drainage channels can convey them approximately 20 km away from the volcano across the entire city area in heavy rain episodes, even without eruption. The Río Chili Valley represents the major concern to city safety owing to the probable cascading effect of combined threats: PDCs and rockslides, dammed lake break-outs and subsequent lahars or floods. Although this study does not intend to replace the current El Misti hazard map, the quantitative results of this probabilistic multi-hazard assessment can be incorporated into a multi-risk analysis, to support decision makers in any future improvement of the current hazard evaluation, such as further land-use planning and possible emergency management.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号