首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
大气科学   1篇
地球物理   2篇
地质学   10篇
海洋学   3篇
天文学   4篇
自然地理   4篇
  2024年   1篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2009年   2篇
  2008年   2篇
  2006年   3篇
  2003年   1篇
  1999年   1篇
  1994年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
Aidan Davison   《Geoforum》2008,39(3):1284-1295
The number and range of contests over the social production of nature is growing. Much environmentalist discourse, however, continues to appeal for unequivocal scientific support on clearly demarcated issues of pure, a-social nature. This paper explores the question of how participants in environmental movements view this demarcation in the context of their own lives. After introducing scholarly critique of dualistic ideas of nature and the ambivalence characteristic of environmentalist conceptions of nature, the paper draws upon a qualitative study with environmentalists in the Australian cities of Melbourne, Perth and Hobart. Inquiring into the interplay of discourse of nature and everyday worlds, interviews revealed a complex interdependence of dualistic and non-dualistic understandings of nature. This ecology of ideas was especially evident in spatial imaginaries of nature. Scientific terminology, social disaffection and pessimism were associated with abstract and mutually exclusive conceptions of society and nature. Reflections on personal experience, however, indicated more flexible and hopeful negotiations in everyday liminal spaces offering ‘the best of both worlds’. It is concluded that environmentalist resistance to dismantling of conceptual boundaries between society and nature may often stem not from failure to appreciate socionatural complexity, but from a strongly felt sense that the self can only truly be found in nature.  相似文献   
2.
Quenched juvenile mafic inclusions (enclaves) are an occasional but informative component in the deposits of large felsic eruptions. Typically, the groundmasses of these inclusions rapidly crystallize as the mafic magma is chilled against a more voluminous, cooler felsic host, providing a physical and chemical record of the nature and timing of mafic–felsic interactions. We examine mafic inclusions of two compositional lineages (tholeiitic and calc-alkaline) from deposits of the 25.4 ka Oruanui eruption (Taupo, New Zealand). 2-D quantitative textural data from analysis of back-scattered electron images reveal a marked diversity in the groundmass textures of the inclusions, including median crystal sizes (amphibole: 14–45 µm; plagioclase: 21–75 µm) and aspect ratios (amphibole: 1.7–4.2; plagioclase: 2.1–4.0), area number densities (amphibole: 122–2660 mm?2; plagioclase: 117–2990 mm?2), area fractions (?) of minerals (?plag?=?23–45%, ?amph?=?0–28%, ?cpx?=?0–6%, ?oxides?=?0.6–5.5%), and the relative abundance of plagioclase and amphibole (?plag/?amph?=?1.0–4.6). Textural parameters vary more significantly within, rather than between, the two compositional lineages, and in some cases show marked variations across individual clasts, implying that each inclusion’s cooling history, rather than bulk composition, was the dominant control on textural development. Groundmass mineral compositions are also diverse both within and between inclusions (e.g. plagioclase from An34–92, with typical intra-clast variability of ~?20 mol%), and do not correlate with bulk chemistry. Diverse groundmass textures and mineral and glass chemistries are inferred to reflect complex interplay of a range of factors including the degree and rate of undercooling, bulk composition, water content and, possibly, intensive variables. Our data are inconsistent with breakup of a crystallizing ponded mafic layer at the base of the Oruanui melt-dominant body, instead implying that each inclusion partially crystallized as a discrete body with a unique cooling history. Extensive ingestion of mush-derived macro-crystals suggests that mechanical breakup of mafic feeder dikes occurred within a transition zone between the mush and melt-dominant magma body. In this zone, the mush lacked yield strength, as has been inferred from field studies of narrow (meters to few tens of meters) mush-melt transition zones preserved in composite intrusions. Evidence for plastic deformation of inclusions during eruption and the abundance of fresh residual glass in inclusions from all eruptive phases suggest that the inclusions formed syn-eruptively, and must have been formed recurrently at multiple stages throughout the eruption.  相似文献   
3.
The first application of the SHETRAN basin‐scale, landslide erosion and sediment yield model is carried out for a major landsliding event in the upper 505 km2 of the Llobregat basin, in the eastern Spanish Pyrenees, in November 1982. The model simulates the spatial distribution of shallow landslides and their sediment yield. Acknowledging uncertainty in the model parameter evaluation, the aim of the application was not to reproduce the observed occurrence of landslides as accurately as possible with one simulation, but to bracket the observed pattern with several simulations representing uncertainty in the key input conditions. Bounds on the landslide simulations were thus determined as a function of uncertainty in the vegetation root cohesion (used in the model factor of safety calculations). The resulting upper bound considerably overestimates the observed pattern (17 000 landslides compared with an observation of around 700), but it reproduces several of the principal clusters in the observed pattern. The lower bound contains around 500 landslides. The sediment yield estimates (2670–14 630 t km?2) are comparable to measurements elsewhere in the Pyrenees for extreme events. The results demonstrate an ability to simulate the basin‐scale landslide response to a rainfall event and the resulting sediment yield. They also highlight the need for further research in setting the uncertainty bounds and in avoiding large overestimates of landslide occurrence arising in part from a current inability to model small‐scale controls for a basin of the given size. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
4.
We test the compatibility and biases of multi-thermal flare DEM (differential emission measure) peak temperatures determined with AIA with those determined by GOES and RHESSI using the isothermal assumption. In a set of 149 M- and X-class flares observed during the first two years of the SDO mission, AIA finds DEM peak temperatures at the time of the peak GOES 1?–?8 Å flux to have an average of T p=12.0±2.9 MK and Gaussian DEM widths of log10(σ T )=0.50±0.13. From GOES observations of the same 149 events, a mean temperature of T p=15.6±2.4 MK is inferred, which is systematically higher by a factor of T GOES/T AIA=1.4±0.4. We demonstrate that this discrepancy results from the isothermal assumption in the inversion of the GOES filter ratio. From isothermal fits to photon spectra at energies of ?≈6?–?12 keV of 61 of these events, RHESSI finds the temperature to be higher still by a factor of T RHESSI/T AIA=1.9±1.0. We find that this is partly a consequence of the isothermal assumption. However, RHESSI is not sensitive to the low-temperature range of the DEM peak, and thus RHESSI samples only the high-temperature tail of the DEM function. This can also contribute to the discrepancy between AIA and RHESSI temperatures. The higher flare temperatures found by GOES and RHESSI imply correspondingly lower emission measures. We conclude that self-consistent flare DEM temperatures and emission measures require simultaneous fitting of EUV (AIA) and soft X-ray (GOES and RHESSI) fluxes.  相似文献   
5.
Regional or local scale hydrological impact studies require high resolution climate change scenarios which should incorporate some assessment of uncertainties in future climate projections. This paper describes a method used to produce a multi-model ensemble of multivariate weather simulations including spatial–temporal rainfall scenarios and single-site temperature and potential evapotranspiration scenarios for hydrological impact assessment in the Dommel catchment (1,350 km2) in The Netherlands and Belgium. A multi-site stochastic rainfall model combined with a rainfall conditioned weather generator have been used for the first time with the change factor approach to downscale projections of change derived from eight Regional Climate Model (RCM) experiments for the SRES A2 emission scenario for the period 2071–2100. For winter, all downscaled scenarios show an increase in mean daily precipitation (catchment average change of +9% to +40%) and typically an increase in the proportion of wet days, while for summer a decrease in mean daily precipitation (−16% to −57%) and proportion of wet days is projected. The range of projected mean temperature is 7.7°C to 9.1°C for winter and 19.9°C to 23.3°C for summer, relative to means for the control period (1961–1990) of 3.8°C and 16.8°C, respectively. Mean annual potential evapotranspiration is projected to increase by between +17% and +36%. The magnitude and seasonal distribution of changes in the downscaled climate change projections are strongly influenced by the General Circulation Model (GCM) providing boundary conditions for the RCM experiments. Therefore, a multi-model ensemble of climate change scenarios based on different RCMs and GCMs provides more robust estimates of precipitation, temperature and evapotranspiration for hydrological impact assessments, at both regional and local scale.  相似文献   
6.
The Bar Hill-Whitchurch-Wrexham Morainic Complex is a large-scale glacial landform thought to represent either the maximum extent or the re-advance of the British-Irish Ice Sheet during the Late Devensian. The origin of the moraine remains uncertain as its key characteristics have not been studied in detail due to a lack of exposures from which its large-scale structure can be determined. The development of new technologies has enabled detailed examination of the topography and internal structure of such large-scale landforms. This paper describes a multi-disciplinary approach involving digital geomorphological mapping using enhanced resolution NextMAP™ digital surface models, geophysical imaging (electrical resistivity tomography) and conventional sedimentological analyses. This combination of techniques is useful for elucidating the origin of a large glacial landform in a region of poor exposure. Digital elevation models such as NextMAP™ offer an efficient and accurate method for landform-mapping, whilst electrical resistivity tomography was able to map the major constituent sediments of the moraine, which had in turn been identified in the single exposure available. Additional geophysical techniques should however be applied to provide further structural data and thereby enable a more detailed interpretation of the moraine's internal structure. Preliminary findings indicate that the moraine is a glaciotectonic landform composed of diamicton and glaciofluvial sediments, an origin consistent with recent suggestions that the Cheshire Plain contained an active ice lobe during the last glacial maximum.  相似文献   
7.
The anomalous polymict ureilite Almahata Sitta (AhS) fell in 2008 when asteroid 2008 TC3 disintegrated over Sudan and formed a strewn field of disaggregated clasts of various ureilitic and chondritic types. We studied the petrology and oxygen isotope compositions of enstatite meteorite samples from the University of Khartoum (UoK) collection of AhS. In addition, we describe the first bona fide (3.5 mm-sized) clast of an enstatite chondrite (EC) in a typical polymict ureilite, Northwest Africa (NWA) 10657. We evaluate whether 2008 TC3 and typical polymict ureilites have a common origin, and examine implications for the history of enstatite meteorite asteroids in the solar system. Based on mineralogy, mineral compositions, and textures, the seven AhS EC clasts studied comprise one EHa3 (S151), one ELb3 (AhS 1002), two EHb4-5 (AhS 2012, AhS 26), two EHb5-6 or possibly impact melt rocks (AhS 609, AhS 41), and one ELb6-7 (AhS 17), while the EC clast in NWA 10657 is EHa3. Oxygen isotope compositions analyzed for five of these are similar to those of EC from non-UoK collections of AhS, and within the range of individual EC meteorites. There are no correlations of oxygen isotope composition with chemical group or subgroup. The EC clasts from the UoK collection show the same large range of types as those from non-UoK collections of AhS. The enstatite achondrite, AhS 60, is a unique type (not known as an individual meteorite) that has also been found among non-UoK AhS samples. EC are the most abundant non-ureilitic clasts in AhS but previously were thought to be absent in typical polymict ureilites, necessitating a distinct origin for AhS. The discovery of an EC in NWA 10657 changes this. We argue that the types of materials in AhS and typical polymict ureilites are essentially similar, indicating a common origin. We elaborate on a model in which AhS and typical polymict ureilites formed in the same regolith on a ureilitic daughter body. Most non-ureilitic clasts are remnants of impactors implanted at ~50–60 Myr after CAI. Differences in abundances can be explained by the stochastic nature of impactor addition. There is no significant difference between the chemical/petrologic types of EC in polymict ureilites and individual EC meteorites. This implies that fragments of the same populations of EC parent bodies were available as impactors at ~50–60 Myr after CAI and recently. This can be explained if materials excavated from various depths on EC bodies at ~50–60 Myr after CAI were reassembled into mixed layers, leaving relatively large bodies intact to survive 4 billion years. Polymict ureilites record a critical timestep in the collisional and dynamical evolution of the solar system, showing that asteroids that may have accreted at distant locations had migrated to within proximity of one another by 50–60 Myr after CAI, and providing constraints on the dynamical processes that could have caused such migrations.  相似文献   
8.
The magmatic systems that give rise to voluminous crystal-poor rhyolite magma bodies can be considered to operate on two contrasting timescales: Those governed by longer-term processes by which a magma acquires its chemical and isotopic characteristics (e.g., fractional crystallisation and assimilation), and those operating at shorter timescales during the physical accumulation of the melt-dominant magma body that finally erupts. We explore the compositional and textural relationships between amphibole and orthopyroxene crystals from the 25.4 ka, 530 km3 (magma) Oruanui eruption products (Taupo volcano, New Zealand) to investigate how processes related to the physical assembly of the pre-eruptive magma body are represented in the crystal record. Over 90 % of orthopyroxenes from the volumetrically dominant high-SiO2 (>74 wt%) rhyolite pumices record textural evidence for a significant disequilibrium event (partial dissolution ± resorption of cores and interiors) prior to the growth of 40–500 μm thick rim zones. This dissolution/regrowth history of orthopyroxene is recorded in the chemistry of co-crystallising amphiboles as a prominent inflection in the concentrations of Mn and Zn, two elements notably enriched in orthopyroxene relative to amphibole. Textural and chemical features, linked with in situ thermobarometric estimates, indicate that a major decompression event preceded the formation of the melt-dominant body. The decompression event is inferred to represent the extraction of large volumes of melt plus crystals from the Oruanui crystal mush/source zone at pressures of 140–300 MPa (~6–12 km depth). Orthopyroxene underwent partial dissolution during ascent before reestablishing in the melt-dominant magma body at pressures of 90–140 MPa (~3.5–6 km). We model Fe–Mg diffusion across the core-rim boundaries along the crystallographic a or b-axes to constrain the timing of this decompression event, which marked establishment of the melt-dominant magma body. Maximum modelled ages indicate that this event did not begin until ~1,600 years before eruption, consistent with constraints from zircon model-age spectra. Once extraction began, it underwent runaway acceleration with a peak extraction age of ~230 years, followed by an apparent period of stasis of ~60 years prior to eruption. The rapidity of the extraction and accumulation processes implies the involvement of a dynamic driving force which, in the rifted continental arc setting of the Taupo Volcanic Zone, seems likely to be represented by magma-assisted extensional tectonic processes.  相似文献   
9.
10.
The ridge-and-swale topography on the continental shelf south of Fire Island, New York, is characterized by northeast-trending linear shoals that are shore attached and shore oblique on the inner shelf and isolated and shore parallel on the middle shelf. High-resolution seismic reflection profiles show that the ridges and swales occur independent of, and are not controlled by, the presence of internal structures (for example, filled tidal inlet channels, paleobarrier strata) or underlying structure (for example, high-relief Cretaceous unconformity). Grab samples of surficial sediments on the shelf south of Fire Island average 98 % sand. Locally, benthic fauna increase silt and clay content through fecal pellet production or increase the content of gravel-size material by contribution of their fragmented shell remains. Surficial sand on the ridges is unimodal at 0.33 mm (medium sand, about 50 mesh), and surficial sand in troughs is bimodal at 0.33 mm and 0.15 mm (fine sand, about 100 mesh). In addition to seismic studies, 26 vibracores were recovered from the continental shelf in state and federal waters from south of Rockaway and Long Beaches, Long Island, New York. Stratigraphic and sedimentological data gleaned from these cores were used to outline the geologic framework in the study area. A variety of sedimentary features were noted in the cores, including burrow-mottled sections of sand in a finer silty-sand, rhythmic lamination of sand and silty-sand that reflect cyclic changes in sediment transport, layers of shell hash and shells that probably represent tempestites, and changes from dark color to light color in the sediments that probably represent changes in the oxidation reduction conditions in the area with time. The stratigraphic units identified are an upper, generally oxidized,nearshore facies, an underlying fine-to medium-sand and silty-clay unit considered to be an estuarine facies, and a lower, coarse-grained, deeply oxidized, cross-laminated preHolocene unit. Grain-size analysis shows that medium-to fine-grained sand makes up most (68-99 %) of the surficial sediments. Gravel exists in trace amounts up to 19 %. Silt ranges between 3 % and 42 %, and clay ranges from 1 % to 10 %.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号