首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  国内免费   14篇
地球物理   1篇
地质学   5篇
海洋学   9篇
综合类   11篇
自然地理   1篇
  2022年   1篇
  2020年   2篇
  2018年   5篇
  2017年   2篇
  2016年   2篇
  2014年   1篇
  2013年   3篇
  2011年   1篇
  2009年   3篇
  2008年   1篇
  2003年   2篇
  2002年   3篇
  1998年   1篇
排序方式: 共有27条查询结果,搜索用时 31 毫秒
1.
在油田勘探与开发中 ,充分认识古冲沟油气藏的勘探与开发是十分重要和有意义的。本文利用东营北部凸起带的地质、钻井、航磁和地震等资料 ,对古冲沟在地震剖面上的特征和古冲沟储层预测方法等进行了研究与探讨  相似文献   
2.
Air guns are important sources for marine seismic exploration. Far-field wavelet of air gun arrays, as a necessary parameter for pre-stack processing and source models, plays an important role during marine seismic data processing and interpretation. When an air gun fires, it generates a series of air bubbles. Similar to onshore seismic exploration, the water forms a plastic fluid near the bubble; the farther the air gun is located from the measurement, the more steady and more accurately represented the wavelet will be. In practice, hydrophones should be placed more than 100 m from the air gun; however, traditional seismic cables cannot meet this requirement. On the other hand, vertical cables provide a viable solution to this problem. This study uses a vertical cable to receive wavelets from 38 air guns and data are collected offshore Southeast Qiong, where the water depth is over 1000 m. In this study, the wavelets measured using this technique coincide very well with the simulated wavelets and can therefore represent the real shape of the wavelets. This experiment fills a technology gap in China.  相似文献   
3.
地震海洋学研究进展   总被引:1,自引:0,他引:1  
胡毅  刘怀山  陈坚  许江 《地球科学进展》2009,24(10):1094-1104
传统船舶调查获取海洋水体温盐资料的方法在水平方向上分辨率较低,而用反射地震探测海洋水体特性的方法--地震海洋学,能有效提高海水温盐资料在水平方向上的分辨率.概述了近5年来地震海洋学的发展过程,重点介绍了地震海洋学方法在海洋锋面观测、水团边界划分、海洋内波分析、中尺度涡旋等方面的研究成果,以及AVO、全波形反演等反射地震处理方法在海洋水体特性研究中的应用.比较了地震海洋学方法与声层析技术、高频声技术等声学方法应用于海洋水体特性研究的异同.并展望了下一步研究工作的重点:①有关地震反射剖面的各种参数与海洋水体温盐结构物理模型的联系及其定量分析;②以研究海洋水体特性为目标的地震反射剖面的处理方法;③海洋地震调查历史数据的应用.  相似文献   
4.
Physical properties of sea water,such as salinity,temperature,density and acoustic velocity,could be demarcated through degradation of energy caused by water absorption,attenuation and other factors.To overcome the challenging difficulties in the quick monitoring of these physical properties,we have explored the high resolution marine seismic survey to instantly characterize them.Based on the unique wavefield propagating in the sea water,we have developed a new approach to suppress the noise caused by the shallow sea water disturbance and obtain useful information for estimating the sea water structure.This approach improves seismic data with high signal-to-noise ratio and resolution.The seismic reflection imaging can map the sea water structure acoustically.Combined with the knowledge of local water body structure profile over years,the instant model for predicting the sea water properties could be built using the seismic data acquired from the specially designed high precision marine seismic acquisition.This model can also be updated with instant observation and the complete data processing system.The present study has the potential value to many applications,such as 3D sea water monitoring,engineering evaluation,geological disaster assessment and environmental assessment.  相似文献   
5.
The Mesozoic-Paleozoic marine residual basin in the South Yellow Sea (SYS) is a significant deep potential hydrocarbon reservoir. However, the imaging of the deep prospecting target is quite challenging due to the specific seismic-geological conditions. In the Central and Wunansha Uplifts, the penetration of the seismic wavefield is limited by the shallow high-velocity layers (HVLs) and the weak reflections in the deep carbonate rocks. With the conventional marine seismic acquisition technique, the deep weak reflection is difficult to image and identify. In this paper, we could confirm through numerical simulation that the combination of multi-level air-gun array and extended cable used in the seismic acquisition is crucial for improving the imaging quality. Based on the velocity model derived from the geological interpretation, we performed two-dimensional finite difference forward modeling. The numerical simulation results show that the use of the multi-level air-gun array can enhance low-frequency energy and that the wide-angle reflection received at far offsets of the extended cable has a higher signal-to-noise ratio (SNR) and higher energy. Therefore, we have demonstrated that the unconventional wide-angle seismic acquisition technique mentioned above could overcome the difficulty in imaging the deep weak reflectors of the SYS, and it may be useful for the design of practical seismic acquisition schemes in this region.  相似文献   
6.
用于研究东海天然气水合物的地震资料处理方法   总被引:3,自引:0,他引:3  
通过对东海海域二维地震、单道地震、浅层剖面等资料进行的综合研究表明 :用于研究天然气水合物的地震资料处理应提高速度分析精度和分辨能力 ,进行子波估算 ,压制多次波 ,相对保持振幅 ,DMO,AVO及波阻抗特殊处理等。在地震剖面上天然气水合物主要特征有 :BSR、振幅异常、速度异常、AVO异常等标志特征。据此 ,可对天然气水合物进行识别和预测。东海海域是天然气水合物可能赋存的有利部位 ,其中冲绳海槽是天然气水合物成藏的目标区域。  相似文献   
7.
The South Yellow Sea is a superimposed basin overlying Mesozoic-Cenozoic continental sediments, which in turn overlie Paleozoic-Mesozoic marine deposits that are now the target of hydrocarbon exploration. Strongly modified by multiple tectonic events, the marine sediments feature a large tectonic relief, with obvious horizontal anisotropy in seismic velocity, which significantly affects the seismic image quality. In this study, the sedimentary velocity anisotropy and its influence on image quality were analyzed using an analytical theory method, assuming transversely isotropic medium with vertical axis of symmetry (VTI), and using seismic and well-log data. Additionally, an anisotropic prestack time migration was used for the imaging of the field data. The results showed that the anisotropic pre-stack time migration processing could be used to significantly improve the accuracy of the seismic images in areas with distinct faults, offering clear images of accurately located fault planes and fault edges, thereby improving the lateral resolution of the seismic data and its signal-to-noise ratio.  相似文献   
8.
Higher-precision determinations of hydrate reservoirs, hydrate saturation levels and storage estimations are important for guaranteeing the ability to continuously research, develop and utilize natural gas hydrate resources in China. With seismic stereoscopic detection technology, which fully combines the advantages of different seismic detection models, hydrate formation layers can be observed with multiangle, wide-azimuth, wide-band data with a high precision. This technique provides more reliable data for analyzing the distribution characteristics of gas hydrate reservoirs, establishing velocity models, and studying the hydrate-sensitive properties of petrophysical parameters;these data are of great significance for the exploration and development of natural gas hydrate resources. Based on a velocity model obtained from the analysis of horizontal streamer velocity data in the hydrate-bearing area of the Shenhu Sea, this paper uses three VCs(longitudinal spacing of 25 m) and four OBSs(transverse spacing of 200 m) to jointly detect seismic datasets consisting of wave points based on an inversion of traveltime imaging sections. Accordingly, by comparing the differences between the seismic phases in the original data and the forward-modeled seismic phases, multiangle coverage constraint corrections are applied to the initial velocity model, and the initial model is further optimized, thereby improving the imaging quality of the streamer data. Petrophysical elastic parameters are the physical parameters that are most directly and closely related to rock formations and reservoir physical properties. Based on the optimized velocity model, the rock elastic hydrate-sensitive parameters of the hydrate reservoirs in the study area are inverted, and the sensitivities of the petrophysical parameters to natural gas hydrates are investigated. According to an analysis of the inversion results obtained from these sensitive parameters, λρ, Vp and λμ are simultaneously controlled by the bulk modulus and shear modulus, while Vs and μρ are controlled only by the shear modulus, and the latter two parameters are less sensitive to hydrate-bearing layers. The bulk modulus is speculated to be more sensitive than the shear modulus to hydrates. In other words, estimating the specific gravity of the shear modulus among the combined parameters can affect the results from the combined elastic parameters regarding hydrate reservoirs.  相似文献   
9.
Sand wave deposition in the Taiwan Shoal of China   总被引:1,自引:0,他引:1  
The Taiwan Shoal is the convex terrain in the southern Taiwan Strait, the largest strait in China. In 2006 and 2007, 21 samples and more than 200-km sub-bottom data as well as 80-km near shore side-scan sonar data were gotten, which gave an initial image of the boundaries of the Taiwan Shoal and revealed the internal structure of the sand waves in this area. The results showed that the major component of the sediment samples was sand, and sand waves occurred everywhere in this area, which closely followed the range of the Taiwan Shoal as we know. The western boundary of the Taiwan Shoal thus reaches the 30 m isobaths near the shore, and as a result, its area potentially covers approximately 12 800-14 770 km2. The sand waves have different shapes under the complex ocean dynamics, and the height of sand waves in the near shore is usually smaller than that in the Taiwan Shoal. The number of sand waves ranged from 1-5 per kilometer, with more waves in the isobath-intensive area, suggesting the importance of topography for the formation of sand waves. The stratigraphic structure under the seabed has parallel bedding or cross bedding, and large dipping groove bedding can be seen locally in different parts, which may be the result of terrestrial deposition since the Late Pleistocene.  相似文献   
10.
根据大量资料分析和实地考察,对我国塑料大棚小气候开发利用进行了综述,并对蔬菜大棚气象服务进行探讨,为塑料大棚应用于农业产业化,取得更好经济效益,提供参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号