首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   0篇
测绘学   1篇
大气科学   10篇
地球物理   11篇
地质学   36篇
海洋学   19篇
综合类   1篇
自然地理   5篇
  2018年   1篇
  2017年   4篇
  2016年   1篇
  2015年   3篇
  2013年   6篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   3篇
  2008年   2篇
  2007年   7篇
  2006年   6篇
  2005年   5篇
  2004年   7篇
  2003年   2篇
  2002年   7篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   4篇
  1993年   1篇
  1985年   3篇
  1982年   1篇
  1981年   2篇
  1977年   1篇
排序方式: 共有83条查询结果,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Solubility mechanisms of water in depolymerized silicate melts quenched from high temperature (1000°-1300°C) at high pressure (0.8-2.0 GPa) have been examined in peralkaline melts in the system Na2O-SiO2-H2O with Raman and NMR spectroscopy. The Na/Si ratio of the melts ranged from 0.25 to 1. Water contents were varied from ∼3 mol% and ∼40 mol% (based on O = 1). Solution of water results in melt depolymerization where the rate of depolymerization with water content, ∂(NBO/Si)/∂XH2O, decreases with increasing total water content. At low water contents, the influence of H2O on the melt structure resembles that of adding alkali oxide. In water-rich melts, alkali oxides are more efficient melt depolymerizers than water. In highly polymerized melts, Si-OH bonds are formed by water reacting with bridging oxygen in Q4-species to form Q3 and Q2 species. In less polymerized melts, Si-OH bonds are formed when bridging oxygen in Q3-species react with water to form Q2-species. In addition, the presence of Na-OH complexes is inferred. Their importance appears to increase with Na/Si. This apparent increase in importance of Na-OH complexes with increasing Na/Si (which causes increasing degree of depolymerization of the anhydrous silicate melt) suggests that water is a less efficient depolymerizer of silicate melts, the more depolymerized the melt. This conclusion is consistent with recently published 1H and 29Si MAS NMR and 1H-29Si cross polarization NMR data.  相似文献   
7.
8.
The structure of silicate melts in the system Na2O·4SiO2 saturated with reduced C-O-H volatile components and of coexisting silicate-saturated C-O-H solutions has been determined in a hydrothermal diamond anvil cell (HDAC) by using confocal microRaman and FTIR spectroscopy as structural probes. The experiments were conducted in-situ with the melt and fluid at high temperature (up to 800 °C) and pressure (up to 1435 MPa). Redox conditions in the HDAC were controlled with the reaction, Mo + H2O = MoO+ H2, which is slightly more reducing than the Fe + H2O = FeO + H2 buffer at 800 °C and less.The dominant species in the fluid are CH4 + H2O together with minor amounts of molecular H2 and an undersaturated hydrocarbon species. In coexisting melt, CH3 - groups linked to the silicate melt structure via Si-O-CH3 bonding may dominate and possibly coexists with molecular CH4. The abundance ratio of CH3 - groups in melts relative to CH4 in fluids increases from 0.01 to 0.07 between 500 and 800 °C. Carbon-bearing species in melts were not detected at temperatures and pressures below 400 °C and 730 MPa, respectively. A schematic solution mechanism is, Si-O-Si + CH4?Si-O-CH3+H-O-Si. This mechanism causes depolymerization of silicate melts. Solution of reduced (C-O-H) components will, therefore, affect melt properties in a manner resembling dissolved H2O.  相似文献   
9.
Accumulation of metabolic CO2 can acidify marine waters above and beyond the ongoing acidification of the ocean by anthropogenic CO2. The impact of respiration on carbonate chemistry and pH is most acute in hypoxic and anoxic basins, where metabolic CO2 accumulates to high concentrations. The bottom waters of the Lower St. Lawrence Estuary (LSLE), where persistently severe hypoxia has developed over the last 80 years, is one such case. We have reconstructed the evolution of pH in the bottom waters from historical and recent data, and from first principles relating the stoichiometry of CO2 produced to oxygen consumed during microbial degradation of organic matter. Based on the value of the atmospheric partial pressure of CO2 that best reproduces the preformed dissolved inorganic carbon concentration in the bottom waters, we estimate the average ventilation age of the bottom waters to be 16?±?3 years. The pH of the bottom waters has decreased by 0.2 to 0.3 over the last 75 years, which is four to six times greater than can be attributed to the uptake of anthropogenic CO2. The pH decrease is accompanied by a decline in the saturation state with respect to both calcite and aragonite. As of 2007, bottom waters in the LSLE are slightly supersaturated with respect to calcite (Ωc?≈?1.06?±?0.04) but are strongly undersaturated with respect to aragonite (Ωa?≈?0.67?±?0.03).

  相似文献   
10.
The sensitivity of large-eddy simulation (LES) to the representation of subgrid-scale (SGS) processes is explored for the case of the convective boundary layer (CBL) developing over surfaces with varying degrees of spatial heterogeneity. Three representations of SGS processes are explored: the traditional constant Smagorinsky–Lilly model and two other dynamic models with Lagrangian averaging approaches to calculate the Smagorinsky coefficient (C S ) and SGS Prandtl number (Pr). With initial data based roughly on the observed meteorology, simulations of daytime CBL growth are performed over surfaces with characteristics (i.e. fluxes and roughness) ranging from homogeneous, to striped heterogeneity, to a realistic representation of heterogeneity as derived from a recent field study. In both idealized tests and the realistic case, SGS sensitivities are mostly manifest near the surface and entrainment zone. However, unlike simulations over complex domains or under neutral or stable conditions, these differences for the CBL simulation, where large eddies dominate, are not significant enough to distinguish the performance of the different SGS models, irrespective of surface heterogeneity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号