首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
地球物理   7篇
地质学   11篇
海洋学   4篇
天文学   3篇
  2014年   1篇
  2013年   5篇
  2009年   2篇
  2008年   3篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1987年   3篇
  1985年   1篇
  1984年   1篇
排序方式: 共有25条查询结果,搜索用时 203 毫秒
1.
Acid water from the Banyuputih river (pH  3.5) is used for the irrigation of agricultural land in the Asembagus coastal area (East Java, Indonesia), with harmful consequences for rice yields. The river water has an unusual composition which is caused by seepage from the acidic Kawah Ijen crater lake into the river. This unique irrigation setting allows the study of soil acidification in situ. This paper assesses the effects of volcanogenically contaminated irrigation water on the chemical properties of the agricultural soils.The changes in soil properties were evaluated by comparing samples taken from the topsoil and sub-soil (1–3 m depth) from areas irrigated with acid water and areas irrigated with neutral water. The field survey thus resulted in four soil categories. Bulk soil composition, organic matter content, moisture content and particle size distribution were determined. Reactive phases were quantified with the selective extractions 1 M KCl, 0.1 M Na-pyrophosphate and 0.2 M acid ammonium oxalate (AAO).By comparing the four soil categories it is shown that the use of the naturally polluted irrigation water has had a large influence on the chemical composition of the topsoil. The composition of the soil solution has changed over the entire investigated soil profile. Furthermore the acid irrigation water has strongly modified the composition of the reactive phases, extracted as KCl, pyrophosphate, and AAO extractable elements, and also the bulk soil composition has been significantly modified. Overall this has resulted in the net dissolution of some elements and the net precipitation of others. The changes in the reactive phases and bulk soil composition are only apparent in the topsoil (0–20 cm) but not in the deeper soil.  相似文献   
2.
River flooding is a problem of international interest. In the past few years many countries suffered from severe floods. A large part of the Netherlands is below sea level and river levels. The Dutch flood defences along the river Rhine are designed for water levels with a probability of exceedance of 1/1250 per year. These water levels are computed with a hydrodynamic model using a deterministic bed level and a deterministic design discharge. Traditionally, the safety against flooding in the Netherlands is obtained by building and reinforcing dikes. Recently, a new policy was proposed to cope with increasing design discharges in the Rhine and Meuse rivers. This policy is known as the Room for the River (RfR) policy, in which a reduction of flood levels is achieved by measures creating space for the river, such as dike replacement, side channels and floodplain lowering. As compared with dike reinforcement, these measures may have a stronger impact on flow and sediment transport fields, probably leading to stronger morphological effects. As a result of the latter the flood conveyance capacity may decrease over time. An a priori judgement of safety against flooding on the basis of an increased conveyance capacity of the river can be quite misleading. Therefore, the determination of design water levels using a fixed-bed hydrodynamic model may not be justified and the use of a mobile-bed approach may be more appropriate. This problem is addressed in this paper, using a case study of the river Waal (one of the Rhine branches in the Netherlands). The morphological response of the river Waal to a flood protection measure (floodplain lowering in combination with summer levee removal) is analysed. The effect of this measure is subject to various sources of uncertainty. Monte Carlo simulations are applied to calculate the impact of uncertainties in the river discharge on the bed levels. The impact of the “uncertain” morphological response on design flood level predictions is analysed for three phenomena, viz. the impact of the spatial morphological variation over years, the impact of the seasonal morphological variation and the impact of the morphological variability around bifurcation points. The impact of seasonal morphological variations turns out to be negligible, but the other two phenomena appear to have each an appreciable impact (order of magnitude 0.05–0.1 m) on the computed design water levels. We have to note however, that other sources of uncertainty (e.g. uncertainty in hydraulic roughness predictor), which may be of influence, are not taken into consideration. In fact, the present investigation is limited to the sensitivity of the design water levels to uncertainties in the predicted bed level.  相似文献   
3.
A hydrogeochemical study of the impact of land use on the composition of natural waters in the Vouzela region in northern Portugal was carried out during the summer of 1983. Water samples were collected from spring and major streams in the area and analyzed for major constituents and some trace elements. Analysis of variance and subsequent pairwise contrast tests demonstrated that waters from agricultural areas are significantly enriched in constiluents such as Na, K, Ca, Mg, Sr, Cl, SO4, and NO3. High concentrations of these ions in agricultural areas are the result of both the application of fertilizers and enhanced evaporation by the intensive irrigation of agricultural lands. Constitutents such as H4SiO4, HCO3, F, and probably Li, which are typically related to mineral weathering, were not affected by land use. In waters from forested areas the concentration of most constituents was about 20% higher than in waters from uncultivated areas with mainly a grass cover. This reflects the difference in the evapotranspiration of these two vegetation types. The chemistry of the Rio Zela clearly reflects differences in land use in the Rio Zela valley.  相似文献   
4.
5.
Concentration levels of the trace elements Al, As, B, Ba, Be, Cd, Co, Cr, Cu, Li, Mo, Ni, Pb, Sr, V, Y, and Zn in the shallow Dutch ground water were studied. Data were extracted from the data base of the Dutch National Ground Water Quality Monitoring Network, a network set up to monitor the diffuse contamination. The network contains over 350 sites at a low density of about 1 per 100 km2. The sites are sampled once a year at two depths (approx. 10 and 25 m below surface). A two-step multivariate statistical approach was used, in which the major element chemistry was used to define water types. Within each water type, trace element behavior could be coupled to distinct geochemical processes: dilution, acidification and weathering, carbonate dissolution, oxidation/reduction, and ion exchange. In recently infiltrated acid rain water in low buffering capacity sands, the anthropogenic influence indirectly caused mobilization of Al (median 430 g/l), Cd (0.6 g/l), Co (14 g/l), Cu (2.7 g/l), Ni (16 g/l), Y (11 g/l), and Zn (50 mg/l). In carbonate bearing sediments the acidification is neutralized, and the mentioned trace elements remain immobile. Arsenic and Cr have higher concentrations levels in ground waters with a slightly reducing character and are possibly governed by the dissolution of iron-manganese hydroxides. Boron, Li, and Sr have high concentrations (respectively 875, 80, 2700 g/l) in the water type related to a seawater source. Strontium is related to carbonate dissolution in all other water types (medians ranging from 100 to 1000 g/l). Barium shows a complex behaviour. It is concluded that the high Al, Cd, Co, Cr, Ni, and Zn concentrations are anthropogenically induced. High Ba and Cr concentrations are inferred to be due to natural processes.  相似文献   
6.
For morphological studies in coastal areas the wave-driven currents are often of primary importance. As the computation of the wave-driven current field requires the computation of the driving forces from a wave propagation model, the quality of these forces is basic to the success of the morphological study. It is shown in the paper that, under the common conditions of slowly varying wave fields, the driving force per unit mass is closely proportional to the wave energy dissipation per unit area and that diffraction-related terms give insignificant contributions. This result holds good for wave fields without current refraction. Examples show that formulation of the driving forces in terms of the wave dissipation yields more trustworthy results than those obtained by numerical differentiation of the radiation stress tensor.  相似文献   
7.
8.
Combined research in geochemistry and mineral chemistry of the hydrothermally altered W-Sn specialized granite of Regoufe and its derivatives in Portugal was undertaken to gain insight in the mineralogical changes associated with hydrothermal processes within a single granite cupola. Over 1000 unpolished rock sections were analyzed by automated X-ray fluorescence spectrometry (XRF). On the basis of the XRF data, a small number of these same sections was selected for investigation by electron probe microanalysis. The study focuses on fourteen elements of interest that are measurable with the chosen techniques. Major pervasive alteration within the Regoufe granite is virtually contemporaneous with mineralization in the form of Sn- or W-bearing quartz veins. Two phases of hydrothermal activity are discerned, characterized by different element associations. Fluids of the first phase were especially rich in Sn, Cs and F, whereas the second phase was marked by a W-Ta-Nb-Rb association and presumably carried less F. Phosphorus probably was an important fluid component in both phases. The fluids are inferred to have fractionated from a related granitic magma at depth.Tin, W, Nb and Ta are mainly found as substitutions or inclusions in biotite in the least altered part of the Regoufe granite. Tantalo-niobian rutile is an important control for the distribution of Nb. Tin occurs in rutile and rarely as cassiterite. Muscovitization caused leaching of Ti and Zr from the granite. Tin, supplied or mobilized by the hydrothermal fluids, behaves differently from W, Nb and Ta. In the most altered rocks, muscovite hosts significant amounts of Sn. Whereas Sn is still related to Cs and Ti, elements that probably represent altered biotite, W, Ta and Nb are related to newly formed Rb-rich muscovite. Columbitetantalite was detected embedded in late muscovite. In contrast to Sn, the fluid-supplied W was predominantly deposited as wolframite in quartz veins and the altered granite is not enriched in W compared to the relatively unaltered rocks. Strontium is preferentially hosted by K-feldspar in the least altered granite; Ca in this rock is still partly contained in albite. With increasing albitization and muscovitization, Sr and Ca were released and are partly bound in newly formed apatite. The primary magmatic apatites have near-ideal formula compositions, but mobilization of P during hydrothermal activity resulted in the formation of Mn-rich apatite in all parts of the granite, and Sr- and probably Li-rich varieties in the most altered rocks. Eosphorite, and scorodite as the oxidation product of arsenopyrite, were also formed as a result of P mobilization. In the least altered rocks, Cs is mainly contained in biotite. In the most altered granite and aplitic rocks, enrichment of Cs and Rb is evenly distributed over K-feldspar and micas. The processes that lead to increased Rb are partly independent of Cs enrichment, and apparently related to the W-Nb-Ta mineralization event, separate from the preceding Sn mineralization.  相似文献   
9.
Multi-element lithogeochemical surveys of aureoles surrounding tin-tungsten-bearing quartz vein systems have been utilized infrequently in exploring for these deposits. At Panasqueira, Beira Beixa, Portugal, a Wrich quartz vein mineralization occurs in the Beira schists surrounding a greisenized cupola and offers a suitable test case for such lithogeochemical studies. Therefore, shale samples were collected at a density of about 6 samples per km2. Pronounced anomalies of tin and tungsten have been detected in these samples, together with those of other elements coeval with the mineralizing processes.The lithogeochemical anomalies at the surface coincide with the extent of the main ore fields. Statistical procedures have been applied to reveal interelement relationships, and contour maps were prepared for single elements and factor scores.Trace element analysis in combination with multivariate statistical data is an effective and rapid aid in locating such mineralizations, apparently also when hidden under a schist cover.  相似文献   
10.
Volcanogenic contamination of irrigation water, caused by effluent from the hyperacid Ijen crater lake, has severely affected the properties of agricultural soils in East Java, Indonesia. From a comparison of acidified topsoil with subsoil and with top- and subsoil in a reference area, we identified processes responsible for changes in soil and soil solution chemistry induced by acid irrigation water, with emphasis on the nutrients Ca, Mg, Fe, and Mn, and on Al, which may become phytotoxic under acid conditions in soils. Compositional data for bulk soil composition and selective extractions with 1 M KCl and 0.2 M acid ammonium oxalate are used in a mass balance approach to specify element fluxes, including uptake by rice plants. The results show that input via irrigation water has produced an increase in the total aluminum content in the affected topsoil, which is of the same order of magnitude as the increase in labile Al. High bioavailability of Al, as reflected by concentrations in KCl extracts, is consistent with elevated concentrations observed in rice plants. In contrast, and despite the high input via irrigation water, Ca and Mg concentrations have decreased in all measured soil fractions through dissolution of amorphous phases and minerals, and through competition of Al for adsorption sites on the exchange complex and plant roots. Strong leaching is also evident for Fe and especially Mn. In terms of the overall mass balance of the topsoil, plant uptake of Al, Ca, Fe, Mg and Mn is negligible. If the use of acid irrigation would be stopped and the soil pH were to increase to values above 4.5, the observed phytotoxicity of Al will be halted. However, crops may then become fully dependent on the input from irrigation water or fertilizer for essential elements, due to the previous removal from the topsoil through leaching.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号