首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   1篇
地球物理   1篇
地质学   5篇
海洋学   1篇
天文学   22篇
  2016年   1篇
  2015年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1989年   2篇
  1985年   2篇
  1984年   3篇
  1981年   2篇
  1979年   2篇
  1976年   2篇
  1975年   1篇
  1974年   3篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
1.
The formation of the gas giant planets Jupiter and Saturn probably required the growth of massive 15 Earth-mass cores on a time scale shorter than the 107 time scale for removal of nebular gas. Relatively minor variations in nebular parameters could preclude the growth of full-size gas giants even in systems in which the terrestrial planet region is similar to our own. Systems containing failed Jupiters, resembling Uranus and Neptune in their failure to capture much nebular gas, would be expected to contain more densely populated cometary source regions. They will also eject a smaller number of comets into interstellar space. If systems of this kind were the norm, observation of hyperbolic comets would be unexpected. Monte Carlo calculations of the orbital evolution of region of such systems (the Kuiper belt) indicate that throughout Earth history the cometary impact flux in their terrestrial planet regions would be 1000 times greater than in our Solar System. It may be speculated that this could frustrate the evolution of organisms that observe and seek to understand their planetary system. For this reason our observation of these planets in our Solar System may tell us nothing about the probability of similar gas giants occurring in other planetary systems. This situation can be corrected by observation of an unbiased sample of planetary systems.Paper presented at the Conference onPlanetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   
2.
Coral mortality may result in macroalgal proliferation or a phase shift into an alga-dominated state. Subtidal, high-latitude western Indian Ocean coral communities at Sodwana Bay on the KwaZulu-Natal coast, South Africa, have experienced some mortality because of warm-water anomalies, storms and other causes, but the response of the macroalgae is unknown. We investigated the abundance and diversity of benthic algae on different hard natural substrata (dead digitate, brain and plate corals and beach rock) on Two-Mile Reef, Sodwana Bay. We also compared algal communities colonising ceramic, marble and pretreated ceramic tiles placed on the reef for six months. We identified 95 algae (14 Chlorophyta, 11 Phaeophyceae, 69 Rhodophyta and one cyanobacterium). Assemblages on natural and artificial substrata were dominated by the brown alga Lobophora variegata (Lamouroux) Womersley ex Oliveira and non-geniculate corallines (Rhodophyta, Corallinaceae). Cluster and ordination analyses revealed that the algae showed no affinity for particular substrata, whether natural or artificial. Algal cover was occasionally higher on rougher tiles and crustose corallines were significantly more abundant on marble than ceramic tiles. Two-Mile Reef had 23.1% dead and 48.4% live scleractinian coral cover, where dead corals were colonised indiscriminately by many small algal species, but there was no evidence of algal proliferation. The results provide a baseline for monitoring this high-latitude reef system.  相似文献   
3.
We report an age of crystallization for spinel-troctolite (VHA basalt) 62295 of 4.00 ± 0.06 × 109 yr (I = 0.69956 ± 6) and an age of crystallization for KREEP-rich basalt 14310 of [3.94 ± 0.03 × 109yr (I = 0.70041 ± 5). The ages probably date the cooling of shock melts.  相似文献   
4.
The existence of Uranus and Neptune presents severe difficulties for the core accretion model for the formation of ice giant planets. We suggest an alternative mechanism, namely disk instability leading to the formation of gas giant protoplanets, coagulation and settling of dust grains to form ice-rock cores at their centers, and photoevaporation of their gaseous envelopes by a nearby OB star, as a possible means of forming ice giant planets.  相似文献   
5.
For models of planetary accumulation in the presence of solar nebular gas, the initial surface temperature of the Earth is controlled by the grain opacity of the atmosphere. The surface temperature in turn controls the quantity of neon dissolved and trapped within the interior of the Earth. To compare accumulation theory with observation calculations have been made of the grain opacity expected to be associated with accumulation in a gaseous nebula. There are two parameters that are in principle determined by the theory, but actually are at present uncertain: the mean eccentricity e of the planetesimal swarm, and the fraction ξ of the accretional energy that is expended in the release of grains into the atmosphere by ablation of the incoming planetesimal. It is found that if the eccentricity of swarm is low (10?3), rather low values of ξ(10?5) are required to match the observed neon data. In contrast higher values of ξ are required (10?1) for the most probable case, intermediate eccentricity (10?2). For the high eccentricity case (e ~ 0.1) ξ must be >10?2. The results show that avoidance of excess trapped neon of solar composition places restrictive, but not necessarily impossible, conditions on the parameters of the accumulation theory.  相似文献   
6.
Models of planetary formation can be tested by comparison of their ability to predict features of our Solar System in a consistent way, and then extrapolated to other hypothetical planetary systems by different choice of parameters. When this is done, it is found that the resulting systems are insensitive to direct effects of the mass of the star, but do strongly depend on the properties of the disk, principally its surface density. Major uncertainty results from lack of an adequate theoretical model that predicts the existence, size, and distribution of analogs of our Solar System, particularly the gas giants Jupiter and Saturn. Nevertheless, reasons can be found for expecting that planetary systems, including those containing biologically habitable planets similar to Earth, may be abundant in the Galaxy and Universe.  相似文献   
7.
George W. Wetherill 《Icarus》1976,28(4):537-542
Despite the negative tone of Chapman's article, it is pointed out that there is substantial agreement between his opinions and those given in my previous publications on this subject. These areas of agreement are identified and distinguished from those which require further investigation or discussion. It is also pointed out that the apparent discrepancy between the small crater population on the Mercury intercrater terrain and the lunar plains may argue against a simultaneous late heavy bombardment. Suggested ways to resolve this discrepancy should be thoroughly evaluated. The primary need at this time is to identify further specific observational, experimental, or theoretical tests in order to advance beyond the stage of agreeing that the available evidence permits a simultaneous late heavy bombardment, to the more difficult task of determining whether or not it probably occurred.  相似文献   
8.
G.W. Wetherill 《Icarus》1974,21(1):94-95
Taff (1973) has concluded that asteroidal collisions rates are much lower than those found by previous authors. His calculations are found to be in error as a consequence of inclusion of an extraneous and incorrect factor of ~10?5. The assumption of molecular chaos in the asteroid belt, while not strictly correct, is not an important source of error in calculations of asteroidal collision rates.  相似文献   
9.
We investigate the orbital evolution of 10(13)- to 10(25) -g planetesimals near 1 AU and in the asteroid belt (near 2.6 AU) prior to the stage of evolution when the mutual perturbations between the planetesimals become important. We include nebular gas drag and the effects of Jupiter and Saturn at their present masses and in their present orbits. Gas drag introduces a size-dependent phasing of the secular perturbations, which leads to a pronounced dip in encounter velocities (Venc) between bodies of similar mass. Plantesimals of identical mass have Venc approximately 1 and approximately 10 m s-1 (near 1 and 2.6 AU, respectively) while bodies differing by approximately 10 in mass have Venc approximately 10 and approximately 100 m s-1 (near 1 and 2.6 AU, respectively). Under these conditions, growth, rather than erosion, will occur only by collisions of bodies of nearly the same mass. There will be essentially no gravitational focusing between bodies less than 10(22) to 10(25) g, allowing growth of planetary embryos in the terrestrial planet region to proceed in a slower nonrunaway fashion. The environment in the asteroid belt will be even more forbidding and it is uncertain whether even the severely depleted present asteroid belt could form under these conditions. The perturbations of Jupiter and Saturn are quite sensitive to their semi-major axes and decrease when the planets' heliocentric distances are increased to allow for protoplanet migration. It is possible, though not clearly demonstrated, that this could produce a depleted asteroid belt but permit formation of a system of terrestrial planet embryos on a approximately 10(6)-year timescale, initially by nonrunaway growth and transitioning to runaway growth after approximately 10(5) years. The calculations reported here are valid under the condition that the relative velocities of the bodies are determined only by Jupiter and Saturn perturbations and by gas drag, with no mutual perturbations between planetesimals. If, while subject to these conditions, the bodies become large enough for their mutual perturbations to influence their velocity and size evolution significantly, the problem becomes much more complex. This problem is under investigation.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号