首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地质学   1篇
天文学   1篇
  2004年   1篇
  1997年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Quartz-rich xenoliths in lavas and pyroclastic rocks from VulcanoIsland, part of the Aeolian arc, Italy, contain silicic meltinclusions with high SiO2 (73–80 wt %) and K2O (3–6wt %) contents. Two types of inclusions can be distinguishedbased on their time of entrapment and incompatible trace element(ITE) concentrations. One type (late, ITE-enriched inclusions)has trace element characteristics that resemble those of themetamorphic rocks of the Calabro-Peloritano basement of theadjacent mainland. Other inclusions (early, ITE-depleted) havevariable Ba, Rb, Sr and Cs, and low Nb, Zr and rare earth element(REE) contents. Their REE patterns are unfractionated, witha marked positive Eu anomaly. Geochemical modelling suggeststhat the ITE-depleted inclusions cannot be derived from equilibriummelting of Calabro-Peloritano metamorphic rocks. ITE-enrichedinclusions can be modelled by large degrees (>80%) of meltingof basement gneisses and schists, leaving a quartz-rich residuerepresented by the quartz-rich xenoliths. Glass inclusions inquartz-rich xenoliths represent potential contaminants of Aeolianarc magmas. Interaction between calc-alkaline magmas and crustalanatectic melts with a composition similar to the analysed inclusionsmay generate significant enrichment in potassium in the magmas.However, ITE contents of the melt inclusions are comparablewith or lower than those of Vulcano calc-alkaline and potassicrocks. This precludes the possibility that potassic magmas inthe Aeolian arc may originate from calc-alkaline parents throughdifferent degrees of incorporation of crustal melts. KEY WORDS: melt inclusions; crustal anatexis; magma assimilation; xenoliths; Vulcano Island  相似文献   
2.
Abstract— The iron-magnesium exchange between M1 and M2 sites in orthopyroxene is a reversible reaction that records the latest event in the thermal evolution of the host rock. A kinetic analysis of this process has been applied to 16 orthopyroxene single crystals from 7 different diogenites to constrain the cooling history of their parent body. The Fe2+-Mg ordering degrees have been determined by single-crystal x-ray diffraction. The Fe2+-Mg ordering closure temperatures were very homogeneous within each sample and ranged, for all diogenites studied, between 311 ± 29 °C and 408 ± 10 °C. Cooling rates at these closure temperatures were calculated using a numerical method developed by Ganguly (1982). These ranged between ~5 °C/104 year in Johnstown and ~0.8 °C/year in Roda. A comparison with other achondrites studied with the same method showed that increasing closure temperatures correspond to increasing cooling rates and that meteorites from a same parent body exhibit similar closure temperature and cooling rate values. The cooling rates obtained for these diogenites, at their low closure temperatures, should probably be ascribed to a complex thermal history of their parent body, thus confirming Miyamoto and Takeda's theory (1994a) of excavation of deep crustal material due to impact events. The differences on cooling rate values for different diogenites could be due to different burial depths in the fragment ejected from the parent body.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号