首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
地球物理   5篇
天文学   6篇
  2013年   1篇
  2009年   1篇
  2003年   1篇
  2000年   1篇
  1999年   1篇
  1984年   1篇
  1976年   1篇
  1974年   3篇
  1973年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
New measurements of the Sun, Moon, Mercury, Venus, Mars, Jupiter, and Saturn at 3.1 and 8.6 mm wavelengths are given. The temperatures reported for the planets at 3.1 mm wavelength are higher than previous measurements in this wavelength range and change the interpretation of some planetary spectra. For Mercury, it is found that the mean brightness temperature is independent of wavelength and that a temperature dependent thermal conductivity is not required to match the observations. In the case of Mars, the spectrum is shown to rise in the millimeter region as simple models predict. For Jupiter, the need to recalculate the spectrum with recent models is demonstrated. The flux density scale proposed by Dent (1972) has been revised according to a more accurate determination of the millimeter brightness temperature of Jupiter.  相似文献   
2.
Semiannual and annual variations in the height of the ionospheric F2-peak   总被引:4,自引:0,他引:4  
Ionosonde data from sixteen stations are used to study the semiannual and annual variations in the height of the ionospheric F2-peak, hmF2. The semiannual variation, which peaks shortly after equinox, has an amplitude of about 8 km at an average level of solar activity (10.7 cm flux = 140 units), both at noon and midnight. The annual variation has an amplitude of about 11 km at northern midlatitudes, peaking in early summer; and is larger at southern stations, where it peaks in late summer. Both annual and semiannual amplitudes increase with increasing solar activity by day, but not at night. The semiannual variation in hmF2 is unrelated to the semiannual variation of the peak electron density NmF2, and is not reproduced by the CTIP and TIME-GCM computational models of the quiet-day thermosphere and ionosphere. The semiannual variation in hmF2 is approximately isobaric, in that its amplitude corresponds quite well to the semiannual variation in the height of fixed pressure-levels in the thermosphere, as represented by the MSIS empirical model. The annual variation is not isobaric. The annual mean of hmF2 increases with solar 10.7 cm flux, both by night and by day, on average by about 0.45 km/flux unit, rather smaller than the corresponding increase of height of constant pressure-levels in the MSIS model. The discrepancy may be due to solar-cycle variations of thermospheric winds. Although geomagnetic activity, which affects thermospheric density and temperature and therefore hmF2 also, is greatest at the equinoxes, this seems to account for less than half the semiannual variation of hmF2. The rest may be due to a semiannual variation of tidal and wave energy transmitted to the thermosphere from lower levels in the atmosphere.  相似文献   
3.
This is a study of the negative ion chemistry in the mesosphere above Tromsø using a number of EISCAT observations of high energy proton precipitation events during the last solar maximum, and in particular around sunset on 23 October, 1989. In these conditions it is possible to look at the relative importance of the various photodetachment and photodissociation processes controlling the concentration of negative ions. The data analysed are from several UHF GEN11 determinations of the ion-plasma ACF together with the pseudo zero-lag estimate of the ‘raw’ electron density, at heights between 55 km and 85 km, at less than 1 km resolution. The power profiles from the UHF are combined with the 55-ion Sodankylä model to obtain consistent estimates of the electron density, the negative ion concentrations, and the average ion mass with height. The neutral concentrations and ion temperature are given by the MSIS90 model. These parameters are then used to compare the calculated widths of the ion-line with the GEN11 determinations. The ion-line spectrum gives information on the effects of negative ions below 70 km where they are dominant; the spectral width is almost a direct measure of the relative abundance of negative ions.  相似文献   
4.
B.L. Ulich 《Icarus》1974,21(3):254-261
Absolute measurements of the brightness temperatures of the Sun, new Moon, Venus, Mars, Jupiter, Saturn, and Uranus, and of the flux density of DR21 at 2.1-mm wavelength are reported. Relative measurements at 3.5-mm wavelength are also presented which resolve the absolute calibration discrepancy between The University of Texas 16-ft radio telescope and the Aerospace Corporation 15-ft antenna. The use of the bright planets and DR21 as absolute calibration sources at millimeter wavelengths is discussed in the light of recent observations.  相似文献   
5.
Precise relative measurements of the disk brightness temperatures of Venus, Mars, Jupiter, and Saturn have been made at a mean wavelength of 1.4 mm. The rings of Saturn contribute significantly to the observed total emission. Other results include a better understanding of the properties of the NRAO 11-m antenna near its high frequency limit and of atmospheric degradation of observations in this wavelength range.  相似文献   
6.
Mark A Clilverd, Ellen Clarke, Henry Rishbeth, Toby D G Clark and Thomas Ulich look forward to a little less solar activity in 2100, using direct and proxy records of past solar and geomagnetic activity.  相似文献   
7.
Earth, Moon, and Planets - Observations of lunar radio emission were made at 3.09 mm wavelength (97.1 GHz) from April 18 to May 20, 1971. Absolute brightness temperatures were measured for five...  相似文献   
8.
A change in the correlation radius of the ionosphere during the magnetospheric substorm of February 14, 2011, which is considered to be 500 km at midlatitudes, has been estimated. The vertical sounding (VS) data from the St. Petersburg and Sodankyla (Finland) observatories, as well as the data of oblique incidence sounding (OIS) at the Sodankyla-St. Petersburg path with a length of 790 km, have been analyzed. A specific feature of the experiment consisted in that the signals of a VS transmitter from Sodankyla were synchronously received at the receiving point on the OIS path in St. Petersburg. The OIS path reflection point is located at a distance of ~400 km from the VS reflection point. Ionograms typical of the VS and OIS signal reflection points in the ionosphere, the distance between which was slightly smaller than the correlation radius of the ionosphere (500 km), and the data of the Sodankyla and St. Petersburg ionosondes have been compared. It has been indicated that a horizontal correlation radius of 400 km can only be considered acceptable during three disturbance phases: the initial phase before the reconfiguration of the ionosphere; the explosion phase (the disturbance maximum), when only the sporadic Es layer is the reflecting ionospheric layer; and the recovery phase, when a disturbance already ceases and the ionosphere returns to its initial undisturbed state. During other disturbance phases, the correlation radius (if it exists) is much smaller than 400 km.  相似文献   
9.
Observations at a wavelength of 1.32 mm have been made of the Jovian planets, Ceres, the satellites Callisto and Ganymede, and the HII region DR 21. The observed brightness temperatures are presented. Those of the Jovian planets agree with the values expected from model atmosphere calculations, except that of Jupiter, which is lower than expected. Ceres and the satellites do not have atmospheres so their emission arised in their subsurface layers. The observed brightness temperatures are intermediate between those measured at infrared and centimeter wavelengths.  相似文献   
10.
B.L. Ulich  E.K. Conklin 《Icarus》1976,27(2):183-189
We have measured the 3.33 mm wavelength disk brightness temperatures of Ganymede (136 ± 21°K), Callisto (95 ± 17°K), Ceres (137 ± 25°K), Uranus (125 ± 9°K), and Neptune (126 ± 9°K). Our observations of Ganymede are consistent with the radiation from a blackbody in solar equilibrium, whereas Callisto's microwave spectrum indicates a surface similar to that of the Moon. The disk temperature for Ceres agrees with that expected from a rapidly rotating blackbody. The millimeter temperatures of Uranus and Neptune greatly exceed solar equilibrium values, implying atmospheres with large temperature gradients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号