首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   3篇
  国内免费   1篇
大气科学   2篇
地球物理   15篇
地质学   22篇
海洋学   66篇
天文学   3篇
综合类   1篇
自然地理   2篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   6篇
  2015年   3篇
  2014年   4篇
  2013年   5篇
  2012年   4篇
  2011年   7篇
  2010年   3篇
  2009年   4篇
  2008年   3篇
  2007年   7篇
  2006年   4篇
  2005年   4篇
  2004年   7篇
  2003年   5篇
  2002年   3篇
  2001年   7篇
  2000年   5篇
  1999年   1篇
  1998年   2篇
  1996年   2篇
  1995年   5篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1987年   1篇
  1986年   2篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
排序方式: 共有111条查询结果,搜索用时 18 毫秒
1.
Comparison experiment between XBT of T-7 probe and CTD was conducted at 15 stations in the sea area centered on 29°N, 135°E in December 1985. There were systematic errors in XBT temperature profiles in comparison with CTD temperature profiles. The main cause of errors was attributed to an error in the free-fall speed of the XBT probes which was provided by the XBT maker. A previous equation for depth correction proposed by Heinmilleret al. (1983) could not give effective correction for our data. A new equation between the probe depth and the elapsed time from landing of the probe on the water was obtained by the method of adjusting temperature gradients of XBT profiles to those of CTD profiles. This equation agreed with the theoretical result given by Seaver and Kuleshov (1982) much better than that of Heinmilleret al. (1983). Systematic errors due to a scatter of values of the reference resistance and variation of B-constant of thermistors used in XBT also seemed to exist. After an adjustment using the temperature difference between XBT and CTD in the mixed layer with depths of about 100 m, the standard deviation of temperature difference between XBT and CTD from the surface to the depth of 750 m was 0.14°C.  相似文献   
2.
Early-warning systems for natural disasters are important tools for disaster risk reduction and for achieving sustainable development and livelihoods. In 2005, the Japanese government initiated a new nationwide early-warning system for landslides disasters. The main methodology of the system is to set a criterion for occurrences of debris flows and slope failures based on several rainfall indices (60-min cumulative rainfall and soil–water index) in each 5-km grid mesh covering all of Japan. Because many of the records of mass movements are lacking in scientific precision on timing and location, the system applies Radial Basis Function Network methods to set the criterion based primarily on rainfall data recorded as not triggering disasters. Since the end of March 2007, under torrential rainfall conditions, early-warning information has been disseminated as part of weather news using TV, radio, and the Internet. Because of the increasing worldwide recognition of the importance of early-warning systems for natural disaster reduction, the aim of this article is to introduce the new Japanese early-warning system to the international landslide community. In this article, the method, the system, and the result of its application to landslide disasters in 2009 are presented.  相似文献   
3.
The accuracy of temperature measurement by the expendable bathythermograph (XBT) is examined for five types of recorders by comparison with co-located CTD measurements and statistical analysis of temperature profiles including an isothermal layer. A positive temperature error increasing downward is occasionally detected for two types of Japanese recorder which have been commonly used among Japanese oceanographic institutions and marine observatories. This error resembles to that reported by Bailey et al. (1989) and Wright (1991) for a different type of recorders, although its cause is not clearly understood. The irregular occurrence of the error suggests that the problem is not solely due to the recorders but rather by some inconsistency of the whole measuring system including them, an XBT probe and sea water. The error is estimated to increase at a rate of O (0.1°C/100 m), and it could be close to 1°C at the deepest part of the profiles (760 m for Tsurumi T-7). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
4.
Mean monthly records of coastal sea surface temperature data (CSST) obtained from stations along the Japanese coasts of the Japan Sea and from those in the related seas for the period 1941–1984 were analyzed by using various methods of time series analysis, for the purpose of clarifying the nature of the year-to-year variations of the state of the Japan Sea. The year-to-year variations in the Japan Sea were found to be closely related to those in the East China Sea and in the western North Pacific. Specific results are as follows. (1) A sudden cooling in the early 1960's occurred in the southern stations of the Japan Sea and continued to the end of the analyzed data. (2) Variations, with about a 6-year periodicity, were observed at most stations, and were especially dominant in the southern stations of the Japan Sea (3) These variations could be traced back to the Kuroshio region of the East China Sea. (4) Variations, with about a 10-year periodicity, were also observed in the northern stations of the Japan Sea.  相似文献   
5.
During the concentrated observation (April–May 1988) conducted as a part of the Ocean Mixed Layer Experiment (OMLET) in the sea area south of Japan, a conspicuous outbreak of warm water occurred from the large-meander region of the Kuroshio toward the southwest in the direction of the former Ocean Weather Station “T”. A series of NOAA-AVHRR infrared images clearly showed the process of this event. A surface buoy-mooring system deployed in this experiment recorded the arrival of this outbreak of water, in terms of the rise of sea-surface temperature (SST) of 1.5°C and the flow of warm water of 1.5kt toward the northwest at “T”. We studied this phenomenon by combining time series of infrared SST images with the oceanographic data obtained by two research vessels. The warm water was about 100 m deep in the section at 137°E along the edge of the Off-Shikoku Warm Water. It was estimated that about twenty outbreaks of this kind in a year can compensate a large heat loss to the atmosphere above this ocean region.  相似文献   
6.
Semigeostrophic gravity waves associated with a coastal boundary current, which has finite and uniform potential vorticity and is bounded away from the coastline by a density front on the ocean surface, are investigated. It is shown that the semigeostrophic coastal current has two waves which are named here the Semigeostrophic Coastal Wave (SCW) and the Semigeostrophic Frontal Wave (SFW). The SCW becomes an elementary Kelvin wave at some limit while the SFW is caused by the existence of the surface density front. The SCW appears mainly as variations in the upper layer depth at the coast and as alongshore velocity at the density front. On the other hand, the SFW appears mainly as variations in the width of the current. When the weak nonlinearity and ageostrophic effect are included, these semigeostrophic gravity waves satisfy the Kortweg- de Vries equation, which suggests that the local changes in the width and/or velocity of the semigeostrophic coastal current propagate as wave-like disturbances.  相似文献   
7.
Following our previous study (Sugimoto and Hanawa, 2005b), we further investigate the reason why reemergence of winter sea surface temperature anomalies does not occur in the North Pacific eastern subtropical mode water (NPESTMW) area, despite its occurrence in the North Pacific subtropical mode water and North Pacific central mode water areas. We use vertical temperature and salinity profiles of the World Ocean Circulation Experiment Hydrographic Program and Argo floats with high vertical and temporal resolution, together with heat flux data through the sea surface. We point out first that one of the causes for non-occurrence of reemergence is that the thickness of NPESTMW is very thin. In addition to this basic cause, two major reasons are found: a vigorous mixing in the lower portion of NPESTMW and less heat input from the atmosphere in the warming season. Since, in the lower portion of NPESTMW and deeper, the stratification is favorable for salt-finger type convection to occur compared with the other mode water areas, vigorous mixing takes place. This is confirmed by both a large Turner Angle there and the existence of staircase structures in vertical temperature and salinity profiles. From the viewpoint of heat input, the NPESTMW area gradually gains heat in the warming season compared with other mode water areas. As a result, NPESTMW cannot be capped so quickly by the shallow summer mixed layer, and water properties of NPESTMW are to be gradually modified, even in the upper portion.  相似文献   
8.
We have developed an algorithm to estimate the wide-ranging Sea Surface Temperature (SST) data from the GMS-5 (Geostationary Meteorological Satellite) S-VISSR (Stretched-Visible Infrared Spin Scan Radiometer). Better SST estimates are realized by averaging the temporal variation of the VISSR calibration table and decreasing noise of the split-window terms using a spatial filter. The effects of the satellite zenith angle were examined in detail for better estimates, and VISSR-derived SSTs with root-mean-square (rms) error of 0.8 K were achieved using a new algorithm. The accuracy of SST estimates has been improved by using the temporal-spatial average of the split-window terms. Using the new techniques, we demonstrate that the hourly wide-ranging SST image data can be used to study the daily variations of SSTs in the Northern and Southern Pacific Oceans.  相似文献   
9.
The influences of mesoscale eddies on variations of the Kuroshio path south of Japan have been investigated using time series of the Kuroshio axis location and altimeter-derived sea surface height maps for a period of seven years from 1993 to 1999, when the Kuroshio followed its non-large meander path. It was found that both the cyclonic and anticyclonic eddies may interact with the Kuroshio and trigger short-term meanders of the Kuroshio path, although not all eddies that approached or collided with the Kuroshio formed meanders. An anticyclonic eddy that revolves clockwise in a region south of Shikoku and Cape Shionomisaki with a period of about 5–6 months was found to propagate westward along about 30°N and collide with the Kuroshio in the east of Kyushu or south of Shikoku. This collision sometimes triggers meanders which propagate over the whole region south of Japan. The eddy was advected downstream, generating a meander on the downstream side to the east of Cape Shionomisaki. After the eddy passed Cape Shionomisaki, it detached from the Kuroshio and started to move westward again. Sometimes the eddy merges with other anticyclonic eddies traveling from the east. Coalescence of cyclonic eddies, which are also generated in the Kuroshio Extension region and propagate westward in the Kuroshio recirculation region south of Japan, into the Kuroshio in the east of Kyushu, also triggers meanders which mainly propagate only in a region west of Cape Shionomisaki. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
10.
A repeat hydrographic section has been maintained over two decades along the 180° meridian across the subarctic-subtropical transition region. The section is naturally divided into at least three distinct zones. In the Subarctic Zone north of 46°N, the permanent halocline dominates the density stratification, supporting a subsurface temperature minimum (STM). The Subarctic Frontal Zone (SFZ) between 42°–46°N is the region where the subarctic halocline outcrops. To the south is the Subtropical Zone, where the permanent thermocline dominates the density stratification, containing a pycnostad of North Pacific Central Mode Water (CMW). The STM water colder than 4°C in the Subarctic Zone is originated in the winter mixed layer of the Bering Sea. The temporal variation of its core temperature lags 12–16 months behind the variations of both the winter sea surface temperature (SST) and the summer STM temperature in the Bering Sea, suggesting that the thermal anomalies imposed on the STM water by wintertime air-sea interaction in the Bering Sea spread over the western subarctic gyre, reaching the 180° meridian within a year or so. The CMW in this section originates in the winter mixed layer near the northern edge of the Subtropical Zone between 160°E and 180°. The CMW properties changed abruptly from 1988 to 1989; its temperature and salinity increased and its potential density decreased. It is argued that these changes were caused by the climate regime shift in 1988/1989 characterized by weakening of the Aleutian Low and the westerlies and increase in the SST in the subarctic-subtropical transition region. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号