首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   1篇
  国内免费   1篇
大气科学   1篇
地球物理   2篇
地质学   12篇
海洋学   17篇
天文学   10篇
自然地理   1篇
  2019年   1篇
  2016年   1篇
  2015年   2篇
  2013年   2篇
  2012年   3篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2005年   11篇
  1995年   2篇
  1994年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
排序方式: 共有43条查询结果,搜索用时 93 毫秒
1.
2.
The EC-funded STRATAGEM project ran from 2000 to 2003 and was a study of the Neogene evolution of the glaciated northeast Atlantic margin from Lofoten to Porcupine, an area extending over nearly 20 degrees of latitude. An extensive seismic, borehole and sample database has been used, much of it supplied by the oil industry. The main products of STRATAGEM have been an integrated, unified stratigraphic framework in the form of an atlas documenting and illustrating the detailed stratigraphy of the entire margin, and a detailed evolution model for this margin. A brief summary of the background to, and organisation of, the project is presented, together with an outline of the main objectives, the physiographic setting of the area and the database.  相似文献   
3.
Lower Palaeogene extrusive igneous rocks of the Faroe Islands Basalt Group (FIBG) dominate the Faroese continental margin, with flood basalts created at the time of breakup and separation from East Greenland extending eastwards into the Faroe‐Shetland Basin. This volcanic succession was emplaced in connection with the opening of the NE Atlantic; however, consensus on the age and duration of volcanism remains lacking. On the Faroe Islands, the FIBG comprises four main basaltic formations (the pre‐breakup Lopra and Beinisvørð formations, and the syn‐breakup Malinstindur and Enni formations) locally separated by thin intrabasaltic sedimentary and/or volcaniclastic units. Offshore, the distribution of these formations remains ambiguous. We examine the stratigraphic framework of these rocks on the Faroese continental margin combining onshore (published) outcrop information with offshore seismic‐reflection and well data. Our results indicate that on seismic‐reflection profiles, the FIBG can be informally divided into lower and upper seismic‐stratigraphic packages separated by the strongly reflective A‐horizon. The Lower FIBG comprises the Lopra and Beinisvørð formations; the upper FIBG includes the Malinstindur and Enni formations. The strongly reflecting A‐horizon is a consequence of the contrast in properties of the overlying Malinstindur and underlying Beinisvørð formations. Onshore, the A‐horizon is an erosional surface, locally cutting down into the Beinisvørð Formation; offshore, we have correlated the A‐horizon with the Flett unconformity, a highly incised, subaerial unconformity, within the juxtaposed and interbedded sedimentary fill of the Faroe‐Shetland Basin. We refer to this key regional boundary as the A‐horizon/Flett unconformity. The formation of this unconformity represents the transition from the pre‐breakup to the syn‐breakup phase of ocean margin development in the Faroe–Shetland region. We examine the wider implications of this correlation considering existing stratigraphic models for the FIBG, discussing potential sources of uncertainty in the correlation of the lower Palaeogene succession across the Faroe–Shetland region, and implications for the age and duration of the volcanism.  相似文献   
4.
Lower Pleistocene sediments recovered in boreholes from the Aberdeen Ground Formation in the central North Sea indicate that the unit was deposited in a delta front to prodelta/shallow, open shelf marine setting. Possible estuarine and clastic nearshore marine deposits have been identified on the western margin of the basin. The delta front sediments consist of interbedded, structureless to laminated sands and muds with organic debris, ferruginous nodules and common soft sediment deformation structures. Sporadic rippled and graded beds, basal scours to beds and starved ripples suggest periodic wave–current reworking. Prodelta/shelf marine sediments are predominantly argillaceous with only occasional thin sand beds and rare phosphatic bands. One exceptionally thick sand body or submarine channel-fill although this remains uncertain. The estuarine/clastic nearshore marine sediments include coarse channel-lag deposits and rippled and laminated subtidal sands. A rich microfossil assemblage recovered from the prodelta/shelf marine sequence indicates that deposition occurred under fluctuating climatic conditions.  相似文献   
5.
We constrain, in detail, fluctuations of two former ice caps in NW Scotland with multibeam seabed surveys, geomorphological mapping and cosmogenic 10Be isotope analyses. We map a continuous sequence of 40 recessional moraines stretching from ~10 km offshore to the Wester Ross mountains. Surface‐exposure ages from boulders on moraine ridges in Assynt and the Summer Isles region show that substantial, dynamic, ice caps existed in NW Scotland between 13 and 14 ka BP. We interpret this as strong evidence that large active glaciers probably survived throughout the Lateglacial Interstadial, and that during the Older Dryas period (ca. 14 ka BP) ice caps in NW Scotland were thicker and considerably more extensive than in the subsequent Younger Dryas Stadial. By inference, we suggest that Lateglacial ice‐cap oscillations in Scotland reflect the complex interplay between changing temperature and precipitation regimes during this climatically unstable period (ca. 15–11 ka BP). © Natural Environment Research Council (NERC) copyright 2008. Reproduced with the permission of NERC. Published by John Wiley & Sons, Ltd.  相似文献   
6.
Abstract– Vargeão Dome (southern Brazil) is a circular feature formed in lava flows of the Lower Cretaceous Serra Geral Formation and in sandstones of the Paraná Basin. Even though its impact origin was already proposed in the 1980s, little information about its geological and impact features is available in the literature. The structure has a rim‐rim diameter of approximately 12 km and comprises several ring‐like concentric features with multiple concentric lineaments. The presence of a central uplift is suggested by the occurrence of deformed sandstone strata of the Botucatu and Pirambóia formations. We present the morphological/structural characteristics of Vargeão Dome, characterize the different rock types that occur in its interior, mainly brecciated volcanic rocks (BVR) of the Serra Geral Formation, and discuss the deformation and shock features in the volcanic rocks and in sandstones. These features comprise shatter cones in sandstone and basalt, as well as planar microstructures in quartz. A geochemical comparison of the target rock equivalents from outside the structure with the shocked rocks from its interior shows that both the BVRs and the brecciated sandstone have a composition largely similar to that of the corresponding unshocked lithologies. No traces of meteoritic material have been found so far. The results confirm the impact origin of Vargeão Dome, making it one of the largest among the rare impact craters in basaltic targets known on Earth.  相似文献   
7.
A model for the vertical cloud structure of Jupiter's Equitorial Plumes is deduced based on an analysis of Voyager images of the equitorial region in the 6190Å methane band and the 6000-Å continuum, and ground-based 8900-Å methane band images of Jupiter. A computer code that represents scattering and absorption from aerosol and gas layers was applied to a heirarchy of increasingly complex model aerosol structures to match the observations in the three wavelengths. The observations are consistent with a model for the vertical cloud structure of the equitorial region that consists of four aerosol layers. A high-altitude haze layer (HAL) with optical depth τ = 1 uniformly blankets the equitorial region at an altitude between 100 and 250 mbar. Below that, a middle-level cloud layer between 400 and 800 mbar contains the well-known Equatorial Plumes. The Plume clouds are optically thick (τ ≥ 12), bright clouds with single scattering albedo ω = 0.997. They are probably composed of ammonia ice. The darker (ω = 0.990) interplume regions contain optically thinner clouds (2 ≤ τ ≤ 5) at the same altitude as the Plumes. An opaque cloud deck between 4000 and 6000 mbar, which is probably composed of water, forms the lowest model layer. In addition to these three layers, a thin forward scattering haze layer above 100 mbar was included in the models for consistency with previous work (Tomasko et al., 1978). We conclude that the vertical structure of the Equatorial Plume clouds is consistent with the hypothesis (Hunt et al., 1981) that the Plumes are caused by upwelling at the ammonia condensation level produced by bouyancy due to latent heat release from the condensation of water clouds nearly three scale heights below the Plumes.  相似文献   
8.
The absorption of cosmic radio noise passing through the ionosphere may be described as a function of radio wave frequencyA(f e ) f e -n , with n 2.0 for spatially uniform precipitation of electrons and n < 2.0 for spatially nonuniform precipitation. Using multifrequency riometer recordings at SANAE, the following observations are reviewed: (1) The frequency distribution of the power index, n, obtained from 4 min averaged absorptions during 1983, shows a most probable value around n 1.5, indicating that mostly energetic electrons are precipitated spatially structured onto the upper atmosphere, as in optical aurora. (2) Multifrequency riometer recordings suggest that field-aligned ionospheric irregularities have scattered additional cosmic radio waves from the central region of the Galaxy into the fields of views of the riometer antennae during an auroral absorption event in the early morning hours of 27 July, 1982. With the power reflectivity by ionospheric irregularities inversely proportional to the fourth power of radio wave frequency, as required by the Bragg condition, an estimated 70% increase in the 20 MHz radio flux at 01:22 UT, at the strong absorption peak, can explain the strongly reduced absorption observed in 20 MHz relative to 30 and 51.4 MHz. (3) Gradual increases in absorptions observed at all three riometer frequencies from onset at 11:50 UT of the largest solar proton ground level enhancement on 29 September, 1989, until 18:00 UT, suggest diffusion of the much more intense low energy protons from the polar cap to the L=4.0 geomagnetic field shell and subsequent precipitation at SANAE due to the South Atlantic Geomagnetic Anomaly. (4) The flux of electron energy deposited per second at SANAE is closely related to geomagnetic activity, but has a lower maximum during the years 1971 and 1980 of solar polar magnetic reversals than in the years 1976 and 1986/87 of minimum solar activity. (5) A significant correlation has been found between the arrival of single-hop whistlers and 30 MHz riometer absorption events, using point statistics. The maximum absorption at 30 MHz was 0.04 dB with a delay of 3 ± 2 s relative to the whistler.  相似文献   
9.
During October and November 2015, the first systematic survey of Sousa teuszii was carried out in the Saloum Delta (Senegal, West Africa), comprising 1 617.5 km of boat-based survey coverage. Thirty sightings were recorded in the Saloum and Diomboss rivers, and along the southern coastline. Dolphins were also observed entering the Bandiala and Djinack channels, and travelling across the border into Gambia. The initial sighting locations were 0.043–1.192 km from shore, and tracked dolphins did not move more than 2.082 km from shore. Groups comprised 1–29 animals (mean 9.3 animals), and at least three neonate calves were observed during November. The overall relative abundance was 0.018 sight. km?1 and 0.175 ind. km?1. Sightings were concentrated in the Diomboss where relative abundance reached 0.037 sight. km?1 and 0.331 ind. km?1. Non-intensive photo-identification produced a minimum population size of 103 animals, the highest recorded for S. teuszii anywhere in its range. Photo-identification also confirmed a movement of individuals between different parts of the Saloum Delta. Combined travel–forage dominated the behaviour. Dolphins were photographed capturing mullet (Mugil sp.) on three occasions. The distribution, population size and movements of S. teuszii are discussed in relation to management.  相似文献   
10.
The North Atlantic margins are archetypally passive, yet they have experienced post-rift vertical movements of up to kilometre scale. The Cenozoic history of such movements along the NW European margin, from Ireland to mid-Norway, is examined by integrating published analyses of uplift and subsidence with higher resolution tectono-stratigraphic indicators of relative movements (including results from the STRATAGEM project). Three episodes of epeirogenic movement are identified, in the early, mid- and late Cenozoic, distinct from at least one phase of compressive tectonism. Two forms of epeirogenic movement are recognised, referred to as tilting (coeval subsidence and uplift, rotations <1° over distances of 100s of Kilometres) and sagging (strongly differential subsidence, rotations up to 4° over distances <100 km). Each epeirogenic episode involved relatively rapid (<10 Ma) km-scale tectonic movements that drove major changes in patterns of sedimentation to find expression in regional unconformity-bounded stratigraphic units. Early Cenozoic tilting (late Paleocene to early Eocene, c. 60–50 Ma) caused the basinward progradation of shelf-slope wedges from elongate uplifts along the inner continental margin and from offshore highs. Mid-Cenozoic sagging (late Eocene to early Oligocene, c. 35–25 Ma) ended wedge progradation and caused the onset of contourite deposition in deep-water basins. Late Cenozoic tilting (early Pliocene to present, <4±0.5 Ma) again caused the basinward progradation of shelf-slope wedges, from uplifts along the inner margin (including broad dome-like features) and from offshore highs. The early, mid- and late Cenozoic epeirogenic episodes coincided with Atlantic plate reorganisations, but the observed km-scale tectonic movements are too large to be accounted for as flexural deflections due to intra-plate stress variations. Mantle–lithosphere interactions are implied, but the succession of epeirogenic episodes, of differing form, are difficult to reconcile with the various syn-to post-rift mechanisms of permanent and/or transient movements proposed in the hypothetical context of a plume beneath Iceland. The epeirogenic movements can be explained as dynamic topographic responses to changing forms of small-scale convective flow in the upper mantle: tilting as coeval upwelling and downwelling above an edge-driven convection cell, sagging as a loss of dynamic support above a former upwelling. The inferred Cenozoic succession of epeirogenic tilting, sagging and tilting is proposed to record the episodic evolution of upper mantle convection during ocean opening, a process that may also be the underlying cause of plate reorganisations. The postulated episodes of flow reorganisation in the NE Atlantic region have testable implications for epeirogenic movements along the adjacent oceanic spreading ridge and conjugate continental margin, as well as on other Atlantic-type ‘passive’ margins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号