首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   0篇
测绘学   1篇
大气科学   2篇
地球物理   31篇
地质学   12篇
海洋学   6篇
天文学   8篇
自然地理   14篇
  2023年   1篇
  2020年   1篇
  2019年   2篇
  2014年   1篇
  2013年   4篇
  2011年   1篇
  2010年   3篇
  2009年   5篇
  2008年   6篇
  2006年   4篇
  2005年   1篇
  2004年   5篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1976年   1篇
  1971年   1篇
  1965年   1篇
排序方式: 共有74条查询结果,搜索用时 15 毫秒
1.
Accumulating evidence points to the importance of mesoscale eddies in supplying nutrients to surface waters in oligotrophic gyres. However, the nature of the biological response and its evolution over time has yet to be elucidated. Changes in mesozooplankton community composition due to eddy perturbation also could affect biogeochemical cycling. Over the course of two summers we sampled seven eddies in the Sargasso Sea. We focused on and followed a post-phytoplankton bloom cyclonic eddy (C1) in 2004 and a blooming mode-water anticyclonic eddy (A4) in 2005. We collected zooplankton in all eddies using a Multiple Opening and Closing Net Environmental Sampling System (MOCNESS) and quantified biomass (>0.15 mm, in five size fractions) from 0 to 700 m over nine discrete depth intervals. Zooplankton biomass (>0.5 mm) in the upper 150 m was similarly enhanced at night for the periphery of C1 and the center of A4 at 0.514 g m−2 and 0.533 g m−2, respectively, compared to outside (0.183 g m−2 outside C1 and 0.197 g m−2 outside A4). Despite minimal chlorophyll a enhancement and dominance by picoplankton in C1, zooplankton biomass increased most for the largest size class (>5 mm). Gut fluorescence for euphausiids and large copepods was also elevated on the C1 periphery. In A4, peak biomass occurred at eddy center coincident with peak primary production, but was highly variable (changing by >3-fold) over time, perhaps resulting from the dense, but patchy distribution of diatom chains in this region. Shifts in zooplankton community composition and abundance were reflected in enhancement of fecal pellet production and active transport by diel vertical migration in eddies. Inside C1 the flux of zooplankton fecal pellets at 150 m in June 2004 was 1.5-fold higher than outside the eddy, accounting for 9% of total particulate organic carbon (POC) flux. The flux of fecal pellets (mostly from copepods) increased through the summer in eddy A4, matching concurrent increases in zooplankton <2 mm in length, and accounting for up to 12% of total POC flux. Active carbon transport by vertically migrating zooplankton was 37% higher on the periphery of C1 and 74% higher at the center of A4 compared to the summer mean at the Bermuda Atlantic Time-series Study (BATS) station. Despite contrasting responses by the phytoplankton community to cyclonic and mode-water eddies, mesozooplankton biomass was similarly enhanced, possibly due to differential physical and biological aggregation mechanisms, and resulted in important zooplankton-mediated changes in mesoscale biogeochemistry.  相似文献   
2.
3.
In order to determine the kinetic energy of an explosion it is necessary to know the initial velocities of ejected fragments. Calculations of initial velocities made earlier with few exceptions did not take into account the resistance of the air and therefore, greatly underestimated the initial velocities, and consequently the energy of the explosions. A solution of the inverse problem of ballistics which takes into account air resistance makes it possible to find precise values of initial velocities of ejection, determined from the distance of ejected fragments and their ballistic coefficients. The method makes it possible to determine the kinetic energy of explosions for eruptions which were not directly observed. It is shown that the velocity field in volcanic explosions is not spherical,i.e. the velocities of ejection of fragments differ markedly in different directions. Accordingly, the maximum distance of ejection of fragments depends not only on the initial angle of ejection, but also on the character of distribution of initial velocities and the ballistic coefficients of the fragments. For fragments with diameters of 40 cm to 2 m the maximum distance of ejection is realized in the case of angles of ejection of 30–36°. For smaller fragments the optimal angles of ejection are still smaller. The ballistics of explosive eruptions of the volcanoes Asama, Arenal, and Shiveluch are considered.  相似文献   
4.
Both pyruvic and α-ketobutyric acids are formed during heating experiments with modern Chione shells. These α-keto acids are also present in fossil specimens. These findings provide additional evidence that the dehydration reaction of free serine and threonine or the β-elimination reaction of peptide bound serine and threonine occurred in fossil materials. These experiments suggest that the formation of α-keto acids occurs early in protein diagenesis. A large fraction of the α-keto acids which were formed have been lost either by subsequent reactions or by diffusion out of the shell matrix.  相似文献   
5.
Direct effects of pure humic substance (BS1 FA) on three different aquatic organisms (Ceratophyllum demersum, Dreissena polymorpha, and Chaetogammarus ischnus) were demonstrated in this study. Exposure to environmentally relevant concentrations (0.5 mg/L) of this humic substance led to the activation of the microsomal and soluble glutathione S‐transferase (GST) in Ceratophyllum demersum. Exposure to 3‐chlorobiphenyl showed also an elevation of GST activity, which is due to the proposed detoxication metabolism of these chlorinated biphenyl. Coexposure to a mixture of 3‐chlorobiphenyl and BS1 FA showed a reduction of enzyme elevation, but still significant over an untreated control. The direct impact of humic substances seems not to be restricted to a specific class of organisms.  相似文献   
6.
Mesopelagic zooplankton may meet their nutritional and metabolic requirements in a number of ways including consumption of sinking particles, carnivory, and vertical migration. How these feeding modes change with depth or location, however, is poorly known. We analyzed fatty acid (FA) profiles to characterize zooplankton diet and large particle (>51 μm) composition in the mesopelagic zone (base of euphotic zone ?1000 m) at two contrasting time-series sites in the subarctic (station K2) and subtropical (station ALOHA) Pacific Ocean. Total FA concentration was 15.5 times higher in zooplankton tissue at K2, largely due to FA storage by seasonal vertical migrators such as Neocalanus and Eucalanus. FA biomarkers specific to herbivory implied a higher plant-derived food source at mesotrophic K2 than at oligotrophic ALOHA. Zooplankton FA biomarkers specific to dinoflagellates and diatoms indicated that diatoms, and to a lesser extent, dinoflagellates were important food sources at K2. At ALOHA, dinoflagellate FAs were more prominent. Bacteria-specific FA biomarkers in zooplankton tissue were used as an indicator of particle feeding, and peaks were recorded at depths where known particle feeders were present at ALOHA (e.g., ostracods at 100–300 m). In contrast, depth profiles of bacterial FA were relatively constant with depth at K2. Diatom, dinoflagellate, and bacterial biomarkers were found in similar proportions in both zooplankton and particles with depth at both locations, providing additional evidence that mesopelagic zooplankton consume sinking particles. Carnivory indices were higher and increased significantly with depth at ALOHA, and exhibited distinct peaks at K2, representing an increase in dependence on other zooplankton for food in deep waters. Our results indicate that feeding ecology changes with depth as well as by location. These changes in zooplankton feeding ecology from the surface through the mesopelagic zone, and between contrasting environments, have important consequences for the quality and quantity of organic material available to deeper pelagic and benthic food webs, and for organic matter sequestration.  相似文献   
7.
During the latitudinal alignment in 2004, ACE and Ulysses encountered two stream interaction regions (SIRs) each Carrington rotation from 2016 to 2018, at 1 and 5.4 AU, respectively. More SIR-driven shocks were observed at 5.4 AU than at 1 AU. Three small SIRs at 1 AU merged to form a strong SIR at 5.4 AU. We compare the Enlil model results with spacecraft observations from four aspects: i) the accuracy of the latest versions of models (WSA v2.2 and Enlil v2.7) vs. old versions (WSA v1.6 and Enlil v2.6), ii) the sensitivity to different solar magnetograms (MWO vs. NSO), iii) the sensitivity to different coronal models (WSA vs. MAS), iv) the predictive capability at 1 AU vs. 5.4 AU. We find the models can capture field sector boundaries with some time offset. Although the new versions have improved the SIR timing prediction, the time offset can be up to two days at 1 AU and four days at 5.4 AU. The models cannot capture some small-scale structures, including shocks and small SIRs at 1 AU. For SIRs, the temperature and total pressure are often underestimated, while the density compression is overestimated. For slow wind, the density is usually overestimated, while the temperature, magnetic field, and total pressure are often underestimated. The new versions have improved the prediction of the speed and density, but they need more robust scaling factors for magnetic field. The Enlil model results are very sensitive to different solar magnetograms and coronal models. It is hard to determine which magnetogram-coronal model combination is superior to others. Higher-resolution solar and coronal observations, a mission closer to the Sun, together with simulations of greater resolution and added physics, are ways to make progress for the solar wind modeling.  相似文献   
8.
9.
Summary. We have developed a new spherical harmonic algorithm for the calculation of the loading and self-gravitating equilibrium pole tide. Based on a suggestion of Dahlen, this approach minimizes the distortions in tide height caused by an incomplete representation of the ocean function. With slight modification our approach easily could be used to compute self-gravitating and loading luni-solar tides as well.
Using our algorithm we have compared the static pole tide with tide observations at a variety of locations around the world. We find statistically significant evidence for pole tide enhancements in mid-ocean as well as the shallow seas.
We have also re-investigated the effect of the static tide on the Chandler wobble period. The difference between the wobble period of an oceanless, elastic earth with a fluid core (Smith & Dahlen) and the period of an earth minus static oceans yields a 7.4-day discrepancy. We conclude from tide observations that much of the discrepancy can probably be accounted for by non-equilibrium pole tide behaviour in the deep oceans.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号