首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
地球物理   2篇
地质学   2篇
天文学   9篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
  2003年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1986年   1篇
排序方式: 共有13条查询结果,搜索用时 31 毫秒
1.
Grechnev  V.V.  Lesovoi  S.V.  Smolkov  G. Ya.  Krissinel  B.B.  Zandanov  V.G.  Altyntsev  A.T.  Kardapolova  N.N.  Sergeev  R.Y.  Uralov  A.M.  Maksimov  V.P.  Lubyshev  B.I. 《Solar physics》2003,216(1-2):239-272
The Siberian Solar Radio Telescope (SSRT) is one of the world's largest solar radio heliographs. It commenced operation in 1983, and since then has undergone several upgrades. The operating frequency of the SSRT is 5.7 GHz. Since 1992 the instrument has had the capability to make one-dimensional scans with a high time resolution of 56 ms and an angular resolution of 15 arc sec. Making one of these scans now takes 14 ms. In 1996 the capability was added to make full, two-dimensional images of the solar disk. The SSRT is now capable of obtaining images with an angular resolution of 21 arc sec every 2 min. In this paper we describe the main features and operation of the instrument, particularly emphasizing issues pertaining to the imaging process and factors limiting data quality. Some of the data processing and analysis techniques are discussed. We present examples of full-disk solar images of the quiet Sun, recorded near solar activity minimum, and images of specific structures: plages, coronal bright points, filaments and prominences, and coronal holes. We also present some observations of dynamic phenomena, such as eruptive prominences and solar flares, which illustrate the high-time-resolution observations that can be done with this instrument. We compare SSRT observations at 5.7 GHz, including computed `light curves', both morphologically and quantatively, with observations made in other spectral domains, such as 17 GHz radio images, Hα filtergrams and magnetograms, extreme-ultraviolet and X-ray observations, and dynamic radio spectra.  相似文献   
2.
Large-scale ancient landslides of the area of more than 5 km2 and volume exceeding 200 × 106 m3 are characteristic features of the valleys incised in the northern periphery of the Crimean Mountains (Ukraine). The largely affected area is located in the outermost cuesta range of the Crimean Mountains which consists of rigid Sarmatian limestones overlying weak Middle Miocene and Upper Palaeogene deposits. A giant landslide arose in the Alma water gap as a reflection of several coincident preparatory factors such as suitable bedrock stratification, smectite-rich bedrock exposed to swelling activity, presence of faults parallel to the valley trend, and river capture event which preceded the landslide event. The occurrence of such ancient megaslides is particularly interesting in the area which is characterized by low precipitation (<500 mm/year) and weak contemporary seismicity. It probably reflects a more dynamic environment in humid phases of the Holocene; however, seismic triggering along the Mesozoic suture zone cannot be rejected. Compressional features such as gravitational folds in the central and distal parts of the landslide, which probably correlate with the whole landslide genesis or its significant reactivation, arose, according to the radiocarbon dating, during the Holocene climatic optimum in the Atlantic period. The slope deformation has been relatively quiescent since that time, except minor historic reactivization which took place in the frontal part of the landslide. We suppose that the studied landslide could be classified as a transitional type of slope deformation with some signs of spreading and translational block slides.  相似文献   
3.
More than 150 landslides originated in the eastern part of the Czech Republic (region of the Flysch Outer Western Carpathians—hereinafter, OWC) due to soil saturation caused by antecedent precipitation and long lasting and intensive rainfalls on 16–18 May 2010 (>300 mm as measured by some stations). As a consequence, a multitude of small failures originated 88% of which was smaller than 104 m2. Most landslides are characterised as shallow (<10 m) or middle–deep (10–30 m) incipient (rather short travel) landslides, debris slides and soil slips spatially clustered to a geological domain underlain by rather weak thin-bedded flysch and unconsolidated Quaternary deposits. An exception to this is represented by a kilometre-long rockslide (∼2–3 mil m3) affecting tectonically weakened and weathered claystone/mudstone-dominated flysch on the southern slope of Mt. Girová (the Beskydy Mountains). The rockslide is one of the largest long runout landslides in the territory of the Czech Republic activated over the past few decades as it reaches the dimensions of the largest documented Holocene long runout landslides in the Czech part of the OWC. A majority of the May 2010 landslide events developed inside older (Holocene or historic) landslide terrains, which points to their spatial persistency and recurrent nature. In spite of the fact that the May 2010 landslide event was not as destructive as some previous landslide activisation in the OWC region (e.g. July 1997 event), it left many slope failures at the initial stage of their potential future reactivation.  相似文献   
4.
The Sayan Solar Observatory, the Tunkinskaya Radiophysical Observatory, and the Baikal Astrophysical Observatory of SibIZMIR have been described. Some results of the investigations carried out over the past years have been expounded. Clarifying solar activity mechanisms and the nature of solar magnetic fields, active regions and flares as well as solar wind are their main problems. In the interest of these investigations the Institute has initiated and developed laboratory-scale simulation of plasma processes.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.  相似文献   
5.
This paper gives the main characteristics of the Siberian Solar Radio Telescope as well as some results derived by investigating the s-component sources and radio bursts on the Sun using the SSRT.  相似文献   
6.
Extended time series (time resolution about 2–3 min) of spatially resolved observations (≫ 17 arcsec) in one dimension of solar S-component sources obtained at the Siberian Solar Radio Telescope (SSRT) at 5.2 cm wavelength allow the detection of evolutional features of the growth and decay of active regions in the solar corona. Characteristic slow flux variations with timescales of about 1–2 hours occurring during the decay phase of the radio emission in the low corona above plages and sunspots are compared with recently detected step-like flux increases on timescales of about 10–20 min followed by quasi-constant periods appearing in the initial phase of the development of active regions. Superimposed on this basic behaviour, also fluctuations at shorter timescales (or even periodic oscillations) have been observed. As it is well known from emission-model calculations, the variations of the S-component radiation can be due to variations of the magnetic field and/or changes of the energy of the radiating particles, which is basically the same emission mechanism as for microwave bursts. Since the “S-component” is originally defined by its long timescale behaviour derived from whole-Sun flux density measurements, the presently detected small-timescale features in S-component sources require either a revised definition of S-component emission or must be considered as “burst-like”.  相似文献   
7.
As deduced from the data with high spatial resolution obtained at the radio heliographs of the Siberian Solar Radio Telescope (SSRT, 5.7 GHz) and the Nobeyama radio heliograph (NoRH, 17 GHz), radio brightness centers in the distribution of the Stokes parameter I are shifted relative to the distribution of the parameter V 1–2 days before an intense flare. It has been shown that this phenomenon can be related to the behavior of quasi-stationary sources over the inversion line of the radial component of the magnetic field (neutral-line associated sources (NLSs)). These sources have a brightness temperature up to 106 K and a circular polarization up to 90%. The origination of NLSs is associated with the outflow of a new magnetic flux into the atmosphere of an active region that is a classical factor of the flare activity. Therefore, an NLS is a precursor of power solar flares and can be used as a forecast factor. Owing to the high resolution of the SSRT, the deviation of the observed polarization distribution of microwave radiation of the active region from the normal one within the solar disk zone containing the active region can be used as a precursor of the preflare state of the active region. As a result, the single-frequency Tanaka-Enome criterion is modified. The use of the data from two radio heliographs (SSRT and NoRH) allows us to propose a two-frequency criterion of normal longitudinal zones that is more efficient for short-term forecasting of solar flares. Preflare features associated with the displacement of brightness centers in I and V, which is manifested as the transformation of NLSs into spot sources, are fine attributes added to forecast according to the two-frequency criterion. This is illustrated by an example of active region 10930, which produced power proton flares on December 6 and 13, 2006.  相似文献   
8.
Uralov  A.M.  Sych  R.A.  Shchepkina  V.L.  Zubkova  G.N.  Smolkov  G. Ya. 《Solar physics》1998,183(2):359-368
The data set archive of the Siberian Solar Radio Telescope was used to synthesize two-dimensional images of more than 50 active solar regions where X-ray flares occurred. Reasonably bright microwave sources with a relatively low level of circular polarization were found to be present in 2/3 of cases prior (days, hours) to the flare. Such characteristics are normally inherent in sources located above the polarity inversion line of the photospheric magnetic field. This result, which has been obtained for the first time using such a representative data set, confirms the significance of these sources in the context of X-ray flare formation.  相似文献   
9.
A complex analysis in different radio ranges of the evolutionary features of the 3 February, 1983 flare (0543-0619-0812 UT) has shown that the flare is a prolonged ( 15 hr) process of energy release and particle acceleration that gradually extends to still greater zones of the active region (AR) magnetosphere in both area and altitude. Observations from the Siberian Solar Radio Telescope obtained at = 5.2 cm indicate that the flare was preceded by quasi-periodical brightness enhancements with a period of 6–7 min of two sources of size 20 and with a brightness temperature of 107 K.During the flare maximum phase, a type II burst with harmonic structure and the subsequent type FC II continuum with fine structure were both observed in the meter band. It has been found that zebra-structure appearances correlate with the H-flare kernel brightenings at loop tops.The observed characteristics of the type II burst and of the type FC II continuum treated in this paper are interpreted in terms of the complex flare flow structure, involving forward and backward shock waves.  相似文献   
10.
We present two-dimensional solar maps at 5.2 cm computed from one-dimensinal observations with the Siberian Solar Radio Telescope (SSRT), using Earth rotation aperture synthesis techniques. The resolution attained with the E-W branch of the instrument is 15 by 45 for a solar declination of about 23°. Maps during the period of June 8 to 13, 1988 clearly show the quiet-Sun background, sunspot and plage associated emission as well as compact sources above the neutral line in some active regions. We found that the latter disappear as the gradient of the longitudinal magnetic field decreases. We also detected emission associated with active regions behind the limb, apparently from unresolved loops, extending up to 40. The prospects of the SSRT, as a dedicated solar instrument, are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号