首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   1篇
地球物理   4篇
地质学   18篇
海洋学   7篇
天文学   76篇
  2018年   1篇
  2017年   1篇
  2013年   1篇
  2011年   2篇
  2010年   2篇
  2009年   5篇
  2008年   9篇
  2007年   8篇
  2006年   8篇
  2005年   11篇
  2004年   10篇
  2003年   11篇
  2002年   5篇
  2001年   8篇
  2000年   5篇
  1999年   5篇
  1998年   8篇
  1990年   1篇
  1981年   2篇
  1978年   1篇
  1977年   1篇
排序方式: 共有105条查询结果,搜索用时 0 毫秒
1.
2.
3.
The opaque mineralogy and the contents and isotope compositions of sulfur in serpentinized peridotites from the MARK (Mid-Atlantic Ridge, Kane Fracture Zone) area were examined to understand the conditions of serpentinization and evaluate this process as a sink for seawater sulfur. The serpentinites contain a sulfur-rich secondary mineral assemblage and have high sulfur contents (up to 1 wt.%) and elevated δ34Ssulfide (3.7 to 12.7‰). Geochemical reaction modeling indicates that seawater-peridotite interaction at 300 to 400°C alone cannot account for both the high sulfur contents and high δ34Ssulfide. These require a multistage reaction with leaching of sulfide from subjacent gabbro during higher temperature (∼400°C) reactions with seawater and subsequent deposition of sulfide during serpentinization of peridotite at ∼300°C. Serpentinization produces highly reducing conditions and significant amounts of H2 and results in the partial reduction of seawater carbonate to methane. The latter is documented by formation of carbonate veins enriched in 13C (up to 4.5‰) at temperatures above 250°C. Although different processes produce variable sulfur isotope effects in other oceanic serpentinites, sulfur is consistently added to abyssal peridotites during serpentinization. Data for serpentinites drilled and dredged from oceanic crust and from ophiolites indicate that oceanic peridotites are a sink for up to 0.4 to 6.0 × 1012 g seawater S yr−1. This is comparable to sulfur exchange that occurs in hydrothermal systems in mafic oceanic crust at midocean ridges and on ridge flanks and amounts to 2 to 30% of the riverine sulfate source and sedimentary sulfide sink in the oceans. The high concentrations and modified isotope compositions of sulfur in serpentinites could be important for mantle metasomatism during subduction of crust generated at slow spreading rates.  相似文献   
4.
To better understand reaction pathways of pyrite oxidation and biogeochemical controls on δ18O and δ34S values of the generated sulfate in acid mine drainage (AMD) and other natural environments, we conducted a series of pyrite oxidation experiments in the laboratory. Our biological and abiotic experiments were conducted under aerobic conditions by using O2 as an oxidizing agent and under anaerobic conditions by using dissolved Fe(III)aq as an oxidant with varying δ18OH2O values in the presence and absence of Acidithiobacillus ferrooxidans. In addition, aerobic biological experiments were designed as short- and long-term experiments where the final pH was controlled at ∼2.7 and 2.2, respectively. Due to the slower kinetics of abiotic sulfide oxidation, the aerobic abiotic experiments were only conducted as long term with a final pH of ∼2.7. The δ34SSO4 values from both the biological and abiotic anaerobic experiments indicated a small but significant sulfur isotope fractionation (∼−0.7‰) in contrast to no significant fractionation observed from any of the aerobic experiments. Relative percentages of the incorporation of water-derived oxygen and dissolved oxygen (O2) to sulfate were estimated, in addition to the oxygen isotope fractionation between sulfate and water, and dissolved oxygen. As expected, during the biological and abiotic anaerobic experiments all of the sulfate oxygen was derived from water. The percentage incorporation of water-derived oxygen into sulfate during the oxidation experiments by O2 varied with longer incubation and lower pH, but not due to the presence or absence of bacteria. These percentages were estimated as 85%, 92% and 87% from the short-term biological, long-term biological and abiotic control experiments, respectively. An oxygen isotope fractionation effect between sulfate and water (ε18OSO4-H2O) of ∼3.5‰ was determined for the anaerobic (biological and abiotic) experiments. This measured value was then used to estimate the oxygen isotope fractionation effects between sulfate and dissolved oxygen in the aerobic experiments which were −10.0‰, −10.8‰, and −9.8‰ for the short-term biological, long-term biological and abiotic control experiments, respectively. Based on the similarity between δ18OSO4 values in the biological and abiotic experiments, it is suggested that δ18OSO4 values cannot be used to distinguish biological and abiotic mechanisms of pyrite oxidation. The results presented here suggest that Fe(III)aq is the primary oxidant for pyrite at pH < 3, even in the presence of dissolved oxygen, and that the main oxygen source of sulfate is water-oxygen under both aerobic and anaerobic conditions.  相似文献   
5.
On 1 December 2007, eight ‘Small Island Developing States’ in the Western and Central Pacific Ocean implemented a management regime restricting the total number of days fished by tuna purse seine vessels within their waters, commonly referred to as the Vessel Day Scheme (VDS). The VDS is seen as one component of management arrangements to reduce fishing mortality on bigeye and yellowfin tuna, constrain fishing effort, and increase the rate of return from access fees by Distant Water Fishing Nations.  相似文献   
6.
Material transfer between estuaries and the nearshore zone has long been of interest, but information on the processes affecting Pacific Northwest estuaries has lagged behind other areas. The west coast of the U.S. is a region of seasonally variable upwelling that results in enhanced phytoplankton production in the nearshore zone. We examined estuarine-nearshore links over time by measuring physical oceanographic variables and chlorophylla concentration from an anchor station in South Slough, Oregon. Data was collected during 24-h cruises conducted at approximately weekly intervals during summer 1996 and spring 1997. The results demonstrate that the physical oceanography of this estuarine site was strongly influenced by the coastal ocean. Marine water reached the estuarine site on every sampled tide, and chlorophylla was clearly advected into the estuary with this ocean water. In contrast, phytoplankton concentrations were comparatively reduced in the estuarine water. There were, however, large fluctuations in the import of chlorophyll over the course of the summer. These variations likely reflect upwelling-generated phytoplankton production in the coastal ocean and subsequent cross-shelf transport to the estuary. Suspension feeding organisms in South Slough likely depend on the advection of this coastally-derived phytoplankton. The large allochthonous chlorophyll input measured for this system appears dissimilar from most estuaries studied to date. Previous investigations have focused on the outwelling and inwelling of materials in estuaries. We must now consider the influence of coastal upwelling and downwelling processes on estuarine material exchange.  相似文献   
7.
Sulfate reduction during seawater reaction with fayalite and with magnetite was rapid at 350°C, producing equilibrium assemblages of talc-pyrite-hematite-magnetite at low water/rock ratios and talc-pyrite-hematite-anhydrite at higher water/rock ratios. At 250°C, seawater reacting with fayalite produced detectable amounts of dissolved H2S, but extent of reaction of solid phases was minor after 150 days. At 200°C, dissolved H2S was not detected, even after 219 days, but mass balance calculations suggest a small amount of pyrite may have formed. Reaction stoichiometry indicates that sulfate reduction requires large amounts of H+, which, in subseafloor hydrothermal systems is provided by Mg metasomatism. Seawater contains sufficient Mg to supply all the H+ necessary for quantitative reduction of seawater sulfate.Systematics of sulfur isotopes in the 250 and 350°C experiments indicate that isotopic equilibrium is reached, and can be modeled as a Rayleigh distillation process. Isotopic composition of hydrothermally produced H2S in natural systems is strongly dependent upon the seawater/basalt ratio in the geothermal system, which controls the relative sulfide contributions from the two important sulfur sources, seawater sulfate and sulfide phases in basalt. Anhydrite precipitation during geothermal heating severely limits sulfate ingress into high temperature interaction zones. Quantitative sulfate reduction can thus be accomplished without producing strongly oxidized rocks and resultant sulfide sulfur isotope values represent a mixture of seawater and basaltic sulfur.  相似文献   
8.
9.
‘No portion of the American continent is perhaps so rich in wonders as the Yellow Stone’ (F.V. Hayden, September 2, 1874)Discoveries from multi-beam sonar mapping and seismic reflection surveys of the northern, central, and West Thumb basins of Yellowstone Lake provide new insight into the extent of post-collapse volcanism and active hydrothermal processes occurring in a large lake environment above a large magma chamber. Yellowstone Lake has an irregular bottom covered with dozens of features directly related to hydrothermal, tectonic, volcanic, and sedimentary processes. Detailed bathymetric, seismic reflection, and magnetic evidence reveals that rhyolitic lava flows underlie much of Yellowstone Lake and exert fundamental control on lake bathymetry and localization of hydrothermal activity. Many previously unknown features have been identified and include over 250 hydrothermal vents, several very large (>500 m diameter) hydrothermal explosion craters, many small hydrothermal vent craters (1–200 m diameter), domed lacustrine sediments related to hydrothermal activity, elongate fissures cutting post-glacial sediments, siliceous hydrothermal spire structures, sublacustrine landslide deposits, submerged former shorelines, and a recently active graben. Sampling and observations with a submersible remotely operated vehicle confirm and extend our understanding of the identified features. Faults, fissures, hydrothermally inflated domal structures, hydrothermal explosion craters, and sublacustrine landslides constitute potentially significant geologic hazards. Toxic elements derived from hydrothermal processes also may significantly affect the Yellowstone ecosystem.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号