首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   5篇
大气科学   1篇
地球物理   31篇
地质学   12篇
天文学   2篇
自然地理   33篇
  2020年   2篇
  2019年   1篇
  2018年   4篇
  2016年   4篇
  2015年   3篇
  2014年   2篇
  2012年   4篇
  2011年   3篇
  2010年   1篇
  2009年   5篇
  2008年   5篇
  2007年   2篇
  2006年   4篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1986年   2篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
排序方式: 共有79条查询结果,搜索用时 15 毫秒
1.
2.
We designed a new seismic source model for Italy to be used as an input for country-wide probabilistic seismic hazard assessment (PSHA) in the frame of the compilation of a new national reference map.

We started off by reviewing existing models available for Italy and for other European countries, then discussed the main open issues in the current practice of seismogenic zoning.

The new model, termed ZS9, is largely based on data collected in the past 10 years, including historical earthquakes and instrumental seismicity, active faults and their seismogenic potential, and seismotectonic evidence from recent earthquakes. This information allowed us to propose new interpretations for poorly understood areas where the new data are in conflict with assumptions made in designing the previous and widely used model ZS4.

ZS9 is made out of 36 zones where earthquakes with Mw > = 5 are expected. It also assumes that earthquakes with Mw up to 5 may occur anywhere outside the seismogenic zones, although the associated probability is rather low. Special care was taken to ensure that each zone sampled a large enough number of earthquakes so that we could compute reliable earthquake production rates.

Although it was drawn following criteria that are standard practice in PSHA, ZS9 is also innovative in that every zone is characterised also by its mean seismogenic depth (the depth of the crustal volume that will presumably release future earthquakes) and predominant focal mechanism (their most likely rupture mechanism). These properties were determined using instrumental data, and only in a limited number of cases we resorted to geologic constraints and expert judgment to cope with lack of data or conflicting indications. These attributes allow ZS9 to be used with more accurate regionalized depth-dependent attenuation relations, and are ultimately expected to increase significantly the reliability of seismic hazard estimates.  相似文献   

3.
4.
The resolution of whole Earth seismic tomographic models   总被引:2,自引:0,他引:2  
  相似文献   
5.
The Acquadolce Subunit on the Island of Elba, Italy, records blueschist facies metamorphism related to the Oligocene–early Miocene stages of continental collision in the Northern Apennines. The blueschist facies metamorphism is represented by glaucophane- and lawsonite-bearing metabasite associated with marble and calcschist. These rock types occur as lenses in a schistose complex representing foredeep deposits of early Oligocene age. Detailed petrological analyses on metabasic and metapelitic protoliths, involving mineral and bulk-rock chemistry coupled with PT and PTX(Fe2O3) pseudosection modelling using PERPLE_X, show that the Acquadolce Subunit recorded nearly isothermal exhumation from peak pressure–temperature conditions of 1.5–1.8 GPa and 320–370°C. During exhumation, peak lawsonite- and possibly carpholite- or stilpnomelane-bearing assemblages were overprinted and partially obliterated by epidote-blueschist and, subsequently, albite-greenschist facies metamorphic assemblages. This study sheds new light on the tectonic evolution of Adria-derived metamorphic units in the Northern Apennines, by showing (a) the deep underthrusting of continental crust during continental collision and (b) rapid exhumation along ‘cold’ and nearly isothermal paths, compatible with syn-orogenic extrusion.  相似文献   
6.
We study the scale dependence of the saturated hydraulic conductivity Ks through the effective porosity ne by means of a newly developed power‐law model (PLM) which allows to use simultaneously measurements at different scales. The model is expressed as product between a single PLM (capturing the impact of the dominating scale) and a characteristic function κ? accounting for the correction because of the other scale(s). The simple (closed form) expression of the κ?‐function enables one to easily identify the scales which are relevant for Ks. The proposed model is then applied to a set of real data taken at the experimental site of Montalto Uffugo (Italy), and we show that in this case two (i.e. laboratory and field) scales appear to be the main ones. The implications toward an important application (solute transport) in Hydrology are finally discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
7.
Boron isotope data are presented for Cenozoic Western Anatolia rocks, which define two main associations: (i) calc-alkaline, shoshonitic and ultra-potassic rocks (Early to Middle Miocene); and (ii) Late Miocene–Quaternary intraplate alkali basalts. Boron data, together with Sr–Nd isotope and other trace elements, are consistent with a progressive dehydration of the slab, producing fluid phases gradually depleted in B (and 11B). These fluids were added to the supraslab mantle, triggering a partial melting that gave rise to orogenic magmatism. The stretching and tearing of the slab caused by the faster convergence of Greece over Africa with respect to Anatolia facilitated an interaction of the upwelling subslab asthenosphere with residual slab-fluids during the Late Miocene followed by production of typical intraplate magmas during the Pleistocene–Holocene, whose relatively high δ11B (approximately −2‰) is considered representative of the local asthenosphere not affected by subduction contamination.  相似文献   
8.
Summary. We give the analytical formulation for calculating the transient displacement of fields produced by earthquakes in a stratified, selfgravitating, incompressible, viscoelastic earth. We have evaluated the potential of viscous creep in the asthenosphere in exciting the Chandler wobble by a four-layer model consisting of an elastic lithosphere, a two-layer Maxwell viscoelastic mantle, and an inviscid core. The seismic source is modelled as an inhomogeneous boundary condition, which involves a jump condition of the displacement fields across the fault in the lithosphere. The response fields are derived from the solution of a two-point boundary value problem, using analytical propagator matrices in the Laplace-transformed domain. Transient flows produced by post-seismic rebound are found to be confined within the asthenosphere for local viscosity values less than 1020P. The viscosity of the mantle below the low-viscosity channel is kept at 1022P. For low-viscosity zones with widths greater than about 100 km and asthenospheric viscosities less than 1018P, we find that viscoelasticity can amplify the perturbations in the moment of inertia by a factor of 4–5 above the elastic contribution within the time span of the wobble period. We have carried out a comparative study on the changes of the inertia tensor from forcings due to surface loading and to faulting. In general the global responses from faulting are found to be much more sensitive to the viscosity structure of the asthenosphere than those produced from surface loading.  相似文献   
9.
Summary. Most crustal earthquakes of the world are observed to occur within a seismogenic layer which extends from the Earth's surface to a depth of a few tens of kilometres at most. A model is proposed in which the shear zone along a transcurrent plate margin is represented as a viscoelastic medium with depth-dependent power-law rheology. A frictional resistance linearly increasing with depth is assumed on a vertical transcurrent fault within the shear zone. Such a model is able to reproduce a continuous transition from the brittle behaviour of the upper crust to the ductile behaviour at depth. Assuming that the shear zone is subjected to a constant strain rate from the opposite motions of the two adjacent plates, it is found that there exists a maximum depth H below which tectonic stress can never reach the frictional threshold: this may be identified as the maximum depth of earthquake nucleation. The value of H is consistent with observations for plausible values of the model parameters. The stress evolution in the shear zone is calculated in the linear approximation of the constitutive equation. A change in rigidity with depth, which is also introduced in the model, may reproduce the high vertical gradient of shear stress, which has been measured across the San Andreas fault, and the fact that most earthquakes are nucleated at some depth in the seismogenic layer. A crack which drops the ambient stress to the dynamic frictional level is then introduced in the model. To this aim, a crack solution is employed without a stress singularity at its edges, which is compatible with a frictional stress threshold criterion for fracture. A constraint on the vertical friction gradient is obtained if such cracks are assumed to be entirely confined within the seismogenic layer.  相似文献   
10.
summary . Calculations of the thermodynamical Gruneisen's gamma as a function of temperature and volume for iron are presented. The ranges of the relevant pressures and temperatures extend to those corresponding to the Earth's core. The various crystal structures of iron and several kinds of inter-molecular potential functions are considered. It is found that it is not possible to describe the Gruneisen's gamma for iron with the accuracy needed for an assessment of the thermal state of the core mainly because the available experimental data do not allow a definite choice among the possible potential functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号