首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   0篇
地球物理   1篇
地质学   1篇
天文学   30篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   4篇
  2006年   6篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1986年   1篇
  1982年   1篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
1.
2.
We have detected low-amplitude radial-velocity variations in two stars, USNO-B1.0 1219–0005465 (GSC  02265–00107 = WASP–1  ) and USNO-B1.0 0964–0543604 (GSC  00522–01199 = WASP–2  ). Both stars were identified as being likely host stars of transiting exoplanets in the 2004 SuperWASP wide-field transit survey. Using the newly commissioned radial-velocity spectrograph SOPHIE at the Observatoire de Haute-Provence, we found that both objects exhibit reflex orbital radial-velocity variations with amplitudes characteristic of planetary-mass companions and in-phase with the photometric orbits. Line-bisector studies rule out faint blended binaries as the cause of either the radial-velocity variations or the transits. We perform preliminary spectral analyses of the host stars, which together with their radial-velocity variations and fits to the transit light curves yield estimates of the planetary masses and radii. WASP-1b and WASP-2b have orbital periods of 2.52 and 2.15 d, respectively. Given mass estimates for their F7V and K1V primaries, we derive planet masses 0.80–0.98 and 0.81–0.95 times that of Jupiter, respectively. WASP-1b appears to have an inflated radius of at least 1.33 R Jup, whereas WASP-2b has a radius in the range 0.65–1.26 R Jup.  相似文献   
3.
4.
Recent R-matrix calculations of electron impact excitation rates in Mg-like Fe  xv are used to derive theoretical emission-line ratios involving transitions in the 243–418 Å  wavelength range. A comparison of these with a data set of solar active region, subflare and off-limb spectra, obtained during rocket flights by the Solar Extreme-Ultraviolet Research Telescope and Spectrograph (SERTS), reveals generally very good agreement between theory and observation, indicating that most of the Fe  xv emission lines may be employed with confidence as electron density diagnostics. In particular, the 312.55-Å  line of Fe  xv is not significantly blended with a Co  xvii transition in active region spectra, as suggested previously, although the latter does make a major contribution in the subflare observations. Most of the Fe  xv transitions which are blended have had the species responsible clearly identified, although there remain a few instances where this has not been possible. We briefly address the long-standing discrepancy between theory and experiment for the intensity ratio of the  3s2 1S–3s3p 3P1  intercombination line at 417.25 Å  to the  3s2 1S–3s3p 1P  resonance transition at 284.16 Å.  相似文献   
5.
McKeown  M.  Keenan  F.P.  Ramsbottom  C.A.  Bell  K.L.  Ryans  R.S.I.  Reid  R.H.G. 《Solar physics》1999,186(1-2):231-242
Recent calculations of electron and proton impact excitation rates in Nevii are used to calculate theoretical emission line ratios involving both n=0 (2–2) and n=1 (2–3) transitions in the 97–895 Å wavelength range. A comparison of these with existing solar observations, obtained by instruments on rocket flights and on the Skylab mission, reveals generally good agreement between theory and observation. This provides experimental support for the accuracy of the atomic data adopted in the line ratio calculations, and implies that the latter may be applied with confidence to the analysis of solar and stellar spectra from current and future satellite missions.  相似文献   
6.
7.
The dissolved (<0.40 γm) fraction of water samples from Newark Bay, New Jersey was analysed for Zn, Cu and Pb content by differential pulse anodic stripping polarographic techniques. In the dissolved fraction, non-labile forms of Zn, Cu and Pb exist as shown by differential pulse anodic stripping voltammetry analysis on acidified samples and acidified-UV irradiated samples. The particulate fraction (>;0.40 μm) contains metals in the form of sulphides (Fe, Zn, Cu, Mn), oxides and oxyhydroxides (Si, Al, Fe, Cu, Ni, Sn), phosphate (Ca, Ce, La), clay minerals (Fe, Zn, Cu, Ti) and carbonaceous material (Fe, Cu, Zn) as demonstrated by X-ray microanalysis. The solid phases are likely present in colloidal form in the dissolved fraction of the water column as well. The forms of the metals in the water column are partially due to the resuspension of bottom sediments by dredging and natural processes, to sewage outfall and to natural geochemical processes.  相似文献   
8.
Very-high-resolution ( R ∼160 000) spectroscopic observations are presented for the early B-type star, HD 83206. Because it has very sharp metal lines, this star affords an opportunity to test theories of model atmospheres and line formation. Non-LTE model atmosphere calculations have been used to estimate the atmospheric parameters and absolute metal abundances (C, N, O, Mg and Si); an LTE analysis was also undertaken to investigate the validity of this simpler approach and to estimate an iron abundance. For the non-LTE calculations, there is excellent agreement with observations of the Balmer lines H α and H δ and the lines of Si  ii and Si  iii for atmospheric parameters of T eff≃21 700±600 K and log  g ≃4.00±0.15 dex. The agreement is less convincing for the LTE calculations, and a higher gravity is deduced. Careful comparison of the metal line profiles with non-LTE calculations implies that the projected rotational and microturbulent velocities have maximum values of ≃5 and ≃2 km s−1, respectively. The latter value is smaller than has often been adopted in LTE model atmosphere analyses of main-sequence stars. Non-LTE absolute metal abundances are estimated, and a comparison with those for normal B-type stars (deduced using similar non-LTE techniques) shows no significant differences. A comparison of the abundances deduced using non-LTE and LTE calculations implies systematic differences of 0.1–0.2 dex, showing the importance of using a non-LTE approach when accurate absolute abundances are required. Its location in the Hertzsprung–Russell diagram and normal metal abundance lead us to conclude that HD 83206 is probably a main-sequence B-type star. As such, it is among the sharpest-lined young B-type star discovered to date.  相似文献   
9.
Local thermodynamic equilibrium (LTE) absolute and differential abundances are presented for a peculiar metal-rich B-type star, HD 135485. These suggest that HD 135485 has a general enrichment of ∼0.5 dex in all the metals observed (C, N, O, Ne, Mg, Al, Si, P, S, Cl, Ar, Sc, Ti, Cr, Mn, Fe and Sr), except for nickel. The helium enhancement and hence hydrogen deficiency can account for ≤ 0.2 dex of this enhancement of metals, with the additional enhancement probably being representative of the progenitor gas. However, some of the metals appear to have greater enhancements, which may have occurred during the star's evolution. The significantly larger nitrogen abundance coupled with a modest helium enhancement observed in HD 135485 indicates that carbon–nitrogen (CN) processed material has possibly contaminated the stellar surface. Neon and carbon enhancements may indicate that helium core flashes have also occurred in HD 135485. Some of the iron-group elements (viz. Mn and Ni) appear to have similar abundance patterns to that of silicon Ap stars, but it is uncertain how these abundance patterns formed if they were not present in the progenitor gas. From a kinematical investigation it is unclear whether this star formed in a metal-rich region as implied by its chemical composition. From its position in the Hertzsprung–Russell diagram, HD 135485 would appear to be an evolved star lying close to or on the horizontal branch.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号