首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   2篇
  国内免费   1篇
测绘学   2篇
大气科学   5篇
地球物理   23篇
地质学   39篇
海洋学   31篇
天文学   12篇
综合类   1篇
自然地理   4篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   3篇
  2018年   7篇
  2017年   8篇
  2016年   4篇
  2015年   1篇
  2014年   9篇
  2013年   13篇
  2012年   5篇
  2011年   6篇
  2010年   12篇
  2009年   10篇
  2008年   10篇
  2007年   4篇
  2006年   5篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1983年   2篇
排序方式: 共有117条查询结果,搜索用时 15 毫秒
1.
A statistical ensemble of microphysical parameters of the background stratospheric aerosol at altitudes of 15 to 30 km is modeled on the basis of experimental data. The aerosol attenuation coefficients (AACs) in the wavelength range 0.38–16.3 μm are calculated for all realizations of the ensemble by algorithms of the Mie theory. Analysis of correlations between the AACs and the microphysical parameters indicate that the AAC correlates most strongly with the total volume V and area S of all particles. The errors of determining the microphysical parameters from AAC measurements are analyzed via the method of linear regression. It is shown that, if the AAC is measured with an error of 5%, the errors of determining both the particle size distribution (PSD) for particles with sizes of 0.4 to 4 μm and the parameter S are an order of magnitude smaller than the prior uncertainty, whereas the error of determining V is two orders of magnitude smaller than the prior uncertainty. Schemes of AAC measurements with the SAGE III, ISAMS, CLAES, HALOE instruments and an IR interferometer in the visible and IR regions are discussed. It is shown that combining the schemes makes it possible to extend the range of particle sizes for which the PSD is retrieved with a satisfactory accuracy and to increase the accuracy of determining S and V substantially and the accuracy of determining the total number of particles N opt to a lesser extent. Examples of interpreting AAC measurements carried out simultaneously with the SAGE III and HALOE instruments within the same spatial region are presented. A systematic discrepancy between vertical profiles of S and V obtained from SAGE III and HALOE measurements is revealed.  相似文献   
2.
3.
4.
The spectral aerosol-extinction coefficients (SAECs) obtained from SAGE III measurements are used to study the physical and integral microphysical characteristics of polar stratospheric clouds (PSCs). Different criteria for PSC identification from SAEC measurements are considered and analyzed based on model and field measurements. An intercomparison of them is performed, and the agreement and difference of the results obtained with the use of different criteria are shown. A new criterion is proposed for PSC identification, which is based on the estimate of how close the measured vector of the spectral attenuation coefficient is to a model distribution of the PSC ensemble. On the basis of different criteria, cases of PSCs are isolated from all SAGE III observations (over 30000). All selection criteria lead to a qualitatively and quantitatively similar space-time distribution of the regions of PSC localization. The PSCs observed in the region accessible to SAGE III measurements are localized in the latitudinal zones 65°–80° in the Northern Hemisphere and 45°–60° in the Southern Hemisphere during the winter-spring period. In the Northern Hemisphere, PSCs are observed within the longitudinal zone 120° W–100° E with the maximum frequency of PSC observation in the vicinity of the Greenwich meridian. In the Southern Hemisphere, the region of PSC observation is almost the same in longitude but with a certain shift in the maximum frequency of PSC observation to the west. This maximum is observed in the vicinity of 40°W, and the region of usual PSC observation is the neighborhood of 60° of the maximum’s longitude. The physical parameters of PSCs are estimated: the mean heights of the lower and upper boundaries of PSCs are 19.5 and 21.9 km, respectively, and the mean cloud temperature is 191.8 K. The integral microphysical parameters of PSCs are estimated: the total surface of NAT particles S NAT = 0.41 μm2/cm3; the total volume of NAT particles V NAT = 1.1 μm3/cm3; and, for all aerosol and cloud particles together, S is 2.9 ± 1.5 at a standard deviation of 2.7 μm2/cm3 and V is 2.8 ± 1.5 at a standard deviation of 4.2 μm3/cm3. A high frequency of PSC occurrence and high values of S and V in PSCs both for all particles and for NAT particles have been noted in January–February 2005 as compared to the rest of the period of SAGE III measurements for 2002–2005.  相似文献   
5.
This study investigates the Arctic Ocean warming episodes in the 20th century using both a high-resolution coupled global climate model and historical observations. The model, with no flux adjustment, reproduces well the Atlantic Water core temperature (AWCT) in the Arctic Ocean and shows that four largest decadalscale warming episodes occurred in the 1930s, 70s, 80s, and 90s, in agreement with the hydrographic observational data. The difference is that there was no pre-warming prior to the 1930s episode, while there were two pre-warming episodes in the 1970s and 80s prior to the 1990s, leading the 1990s into the largest and prolonged warming in the 20th century. Over the last century, the simulated heat transport via Fram Strait and the Barents Sea was estimated to be, on average, 31.32 TW and 14.82 TW, respectively, while the Bering Strait also provides 15.94 TW heat into the west- ern Arctic Ocean. Heat transport into the Arctic Ocean by the Atlantic Water via Fram Strait and the Barents Sea correlates significantly with AWCT ( C = 0.75 ) at 0- lag. The modeled North Atlantic Oscillation (NAO) index has a significant correlation with the heat transport ( C = 0.37 ). The observed AWCT has a significant correlation with both the modeled AWCT ( C =0.49) and the heat transport ( C =0.41 ). However, the modeled NAO index does not significantly correlate with either the observed AWCT ( C = 0.03 ) or modeled AWCT ( C = 0.16 ) at a zero-lag, indicating that the Arctic climate system is far more complex than expected.  相似文献   
6.
Izmailov  I. S.  Shakht  N. A.  Polyakov  E. V.  Gorshanov  D. L.  Pogodin  M. A. 《Astrophysics》2021,64(2):160-171
Astrophysics - This paper is a continuation of our earlier work devoted to determining the orbit and mass of the star 61 Cyg and the changes in the photometric characteristics of its components....  相似文献   
7.
Izvestiya, Atmospheric and Oceanic Physics - A new technique has been developed to obtain the total ozone content (TOC) under cloudy conditions from the spectra of outgoing thermal IR radiation...  相似文献   
8.
Doklady Earth Sciences - The temporal relations between alkaline rocks of the Aryskan rare metal (Y, REEs, Nb, Ta) deposit are determined using metamict zircon with high U and Th contents, which...  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号