首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
大气科学   1篇
地球物理   10篇
地质学   2篇
海洋学   7篇
天文学   7篇
  2019年   4篇
  2018年   3篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2006年   1篇
  2004年   2篇
  1977年   1篇
  1973年   2篇
  1971年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
1.
Variations in the positions of the intersection points of tangents to ray structures in the polar corona of the Sun during the solar cycle are considered. At first glance, the decrease in the distance q between the tangent intersection point and the center of the solar disk during activity maximum contradicts harmonic analyses that indicate that the relative weight of higher harmonics in the global field increases during this period. Indeed, the higher the harmonic number in an axisymmetric field, the closer the intersection point of the field-line tangents (the magnetic focus) to the solar surface. It is shown that q for a field composed of two harmonics with opposite polarities at the poles can be smaller than q for either of them taken alone. A simple model representing the global field using the third and seventh harmonics is analyzed; this model can reproduce quite satisfactorily the observed dynamics of magnetic foci of the polar field.  相似文献   
2.
The kinematics of the material motion in a variable magnetic field in the MHD approximation of a strong field and cold plasma is investigated. The variation of magnetic moments of two dipole systems leads to the development of such phenomena as loop prominences, coronal rain and funnel prominences.  相似文献   
3.
The results of studies in the area ofnumerical weather prediction and climate theory are presented. These results were obtained by the team of researchers of the Siberian school of mathematical modeling of atmosphere and ocean dynamics established by academician G.I. Marchuk. Academician V.P. Dymnikov played an enormous role in the development of this school by enriching it with new approaches and ideas. His contribution to the Siberian school of mathematical modeling was most strongly pronounced concerning three problems: numerical weather prediction for the Siberian region, the modeling of the climate system dynamics, and the mathematics and theory of climate.  相似文献   
4.
Condensation of water vapor and carbon dioxide in the jet exhausts of rocket engines during last stages of Proton, Molniya, and Start launchers operating in the upper atmospheric with different types of fuels is considered. Particle heating is taken into account with emission of latent heat of condensation and energy loss due to radiation and heat exchange with combustion products. Using the solution of the heat balance and condensed particle mass equations, the temporal change in the temperature and thickness of the condensate layer is obtained. Practically, no condensation of water vapor and carbon dioxide in the jet exhaust of a Start launcher occurs. In plumes of Proton and Molniya launchers, the condensation of water vapor and carbon dioxide can start at distances of 120–170 m and 450–650 m from the engine nozzle, respectively. In the course of condensation, the thickness of the “water” layer on particles can exceed 100 Å, and the thickness of carbon dioxide can exceed 60 Å.  相似文献   
5.
The condensation process of water vapors in the exhaust plume of a rocket engine in the upper atmosphere is considered. We take into account the processes of particle heating during the release of latent heat of condensation, radiative heating, and energy losses to emission. From the solution of the equations of thermal balance and mass balance of condensing particles, we obtained the time dependences of variations in temperature and particle sizes. In the process of condensation, the thickness of the ice layer on particles may reach >70 Å.  相似文献   
6.
The dispersion of exhaust products of rocket fuel in the direction perpendicular to the motion of a rocket is investigated in this work. A comparison of the results of numerical calculations with a self-similar approximation of a strong cylindrically symmetric explosion is fulfilled. It is shown that at sufficiently high rocket velocity V , which exceeds the sum of gas exhaust velocity V e from the nozzle and sound speed V s (V > V e +V s ), a gasdynamic hole can arise around the rocket trajectory in the upper atmosphere, inside which the total concentration of gas becomes less than the equilibrium concentration of gas at a given altitude. The dynamics of the profiles of density and temperature of the exhaust products inside a rocket plume is calculated.  相似文献   
7.
Geomagnetism and Aeronomy - Photographic and video observations made by astronaut Thomas Pesquet (European Space Agency) during the 51st expedition to the International Space Station (ISS) contain...  相似文献   
8.
In this paper, unusual optical phenomena observed in our country and abroad upon launches of Russian rockets are discussed and interpreted: they are regarded as the aftereffects of sunlight scattering by gas-dust clouds created by rocket fuel combustion products in different modes of engine operation. The results of instrumental observations of the clouds can be used to study physical processes in the upper atmosphere.  相似文献   
9.
Various mechanisms of the formation of AlO molecules during the operation of solid-propellant rocket engines in the upper atmosphere and processes of AlO glow decay are considered. The main contribution to AlO formation at altitudes of 120–200 km is made by the interaction of metallic aluminum contained in products of solid propellant combustion with atmospheric oxygen. The decrease in the brightness of AlO clouds is caused by a decrease in the AlO concentration as a result of cloud expansion due to diffusion processes and AlO oxidation with atomic oxygen.  相似文献   
10.
Ocean Dynamics - The article analyzes the results of the EOF decomposition of climatic data and assesses the role of its components in the formation of climatic ice tendencies of recent decades....  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号