首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
天文学   6篇
自然地理   1篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
  1998年   1篇
  1997年   1篇
  1985年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
2.
The Heliospheric Imagers Onboard the STEREO Mission   总被引:1,自引:0,他引:1  
Mounted on the sides of two widely separated spacecraft, the two Heliospheric Imager (HI) instruments onboard NASA’s STEREO mission view, for the first time, the space between the Sun and Earth. These instruments are wide-angle visible-light imagers that incorporate sufficient baffling to eliminate scattered light to the extent that the passage of solar coronal mass ejections (CMEs) through the heliosphere can be detected. Each HI instrument comprises two cameras, HI-1 and HI-2, which have 20° and 70° fields of view and are off-pointed from the Sun direction by 14.0° and 53.7°, respectively, with their optical axes aligned in the ecliptic plane. This arrangement provides coverage over solar elongation angles from 4.0° to 88.7° at the viewpoints of the two spacecraft, thereby allowing the observation of Earth-directed CMEs along the Sun?–?Earth line to the vicinity of the Earth and beyond. Given the two separated platforms, this also presents the first opportunity to view the structure and evolution of CMEs in three dimensions. The STEREO spacecraft were launched from Cape Canaveral Air Force Base in late October 2006, and the HI instruments have been performing scientific observations since early 2007. The design, development, manufacture, and calibration of these unique instruments are reviewed in this paper. Mission operations, including the initial commissioning phase and the science operations phase, are described. Data processing and analysis procedures are briefly discussed, and ground-test results and in-orbit observations are used to demonstrate that the performance of the instruments meets the original scientific requirements.  相似文献   
3.
The POLAR Investigation of the Sun (POLARIS) mission uses a combination of a gravity assist and solar sail propulsion to place a spacecraft in a 0.48 AU circular orbit around the Sun with an inclination of 75° with respect to solar equator. This challenging orbit is made possible by the challenging development of solar sail propulsion. This first extended view of the high-latitude regions of the Sun will enable crucial observations not possible from the ecliptic viewpoint or from Solar Orbiter. While Solar Orbiter would give the first glimpse of the high latitude magnetic field and flows to probe the solar dynamo, it does not have sufficient viewing of the polar regions to achieve POLARIS’s primary objective: determining the relation between the magnetism and dynamics of the Sun’s polar regions and the solar cycle.
T. AppourchauxEmail:
  相似文献   
4.
We show for the first time images of solar coronal mass ejections (CMEs) viewed using the Heliospheric Imager (HI) instrument aboard the NASA STEREO spacecraft. The HI instruments are wide-angle imaging systems designed to detect CMEs in the heliosphere, in particular, for the first time, observing the propagation of such events along the Sun – Earth line, that is, those directed towards Earth. At the time of writing the STEREO spacecraft are still close to the Earth and the full advantage of the HI dual-imaging has yet to be realised. However, even these early results show that despite severe technical challenges in their design and implementation, the HI instruments can successfully detect CMEs in the heliosphere, and this is an extremely important milestone for CME research. For the principal event being analysed here we demonstrate an ability to track a CME from the corona to over 40 degrees. The time – altitude history shows a constant speed of ascent over at least the first 50 solar radii and some evidence for deceleration at distances of over 20 degrees. Comparisons of associated coronagraph data and the HI images show that the basic structure of the CME remains clearly intact as it propagates from the corona into the heliosphere. Extracting the CME signal requires a consideration of the F-coronal intensity distribution, which can be identified from the HI data. Thus we present the preliminary results on this measured F-coronal intensity and compare these to the modelled F-corona of Koutchmy and Lamy (IAU Colloq. 85, 63, 1985). This analysis demonstrates that CME material some two orders of magnitude weaker than the F-corona can be detected; a specific example at 40 solar radii revealed CME intensities as low as 1.7×10−14 of the solar brightness. These observations herald a new era in CME research as we extend our capability for tracking, in particular, Earth-directed CMEs into the heliosphere.  相似文献   
5.
The SECCHI Heliospheric Imager (HI) instruments on-board the STEREO spacecraft have been collecting images of solar wind transients, including coronal mass ejections, as they propagate through the inner heliosphere since the beginning of 2007. The scientific use of the images depends critically on the performance of the instruments and its evolution over time. One of the most important factors affecting the performance of the instrument is the rejection of straylight from the Sun and from other bright objects located both within and outside the HI fields of view. This paper presents an analysis of the evolution of the straylight-rejection performance of the HI instrument on each of the two STEREO spacecraft over the three first years of the mission. The straylight level has been evaluated and expressed in mean solar brightness units, in which such scientific observations are usually quoted, using photometric conversion factors.  相似文献   
6.
Neupert  W.M.  Newmark  J.  Delaboudinière  J.-P.  Thompson  B.J.  Catura  R.C.  Moses  J.D.  Gurman  J.B.  Portier-Fozzani  F.  Maucherat  A.J.  Defise  J.M.  Jamar  C.  Rochus  P.  Dere  K.P.  Howard  R.A.  Michels  D.J.  Freeland  S.  Lemen  J.R.  Stern  R.A. 《Solar physics》1998,183(2):305-321
Solar EUV images recorded by the EUV Imaging Telescope (EIT) on SOHO have been used to evaluate temperature and density as a function of position in two largescale features in the corona observed in the temperature range of 1.0–2.0 MK. Such observations permit estimates of longitudinal temperature gradients (if present) in the corona and, consequently, estimates of thermal conduction and radiative losses as a function of position in the features. We examine two relatively cool features as recorded in EIT's Feix/x (171 Å) and Fexii (195 Å) bands in a decaying active region. The first is a long-lived loop-like feature with one leg, ending in the active region, much more prominent than one or more distant footpoints assumed to be rooted in regions of weakly enhanced field. The other is a near-radial feature, observed at the West limb, which may be either the base of a very high loop or the base of a helmet streamer. We evaluate energy requirements to support a steady-state energy balance in these features and find in both instances that downward thermal conductive losses (at heights above the transition region) are inadequate to support local radiative losses, which are the predominant loss mechanism. The requirement that a coronal energy deposition rate proportional to the square of the ambient electron density (or pressure) is present in these cool coronal features provides an additional constraint on coronal heating mechanisms.  相似文献   
7.
Eit Observations of the Extreme Ultraviolet Sun   总被引:3,自引:0,他引:3  
The Extreme Ultraviolet Imaging Telescope (EIT) on board the SOHO spacecraft has been operational since 2 January 1996. EIT observes the Sun over a 45 x 45 arc min field of view in four emission line groups: Feix, x, Fexii, Fexv, and Heii. A post-launch determination of the instrument flatfield, the instrument scattering function, and the instrument aging were necessary for the reduction and analysis of the data. The observed structures and their evolution in each of the four EUV bandpasses are characteristic of the peak emission temperature of the line(s) chosen for that bandpass. Reports on the initial results of a variety of analysis projects demonstrate the range of investigations now underway: EIT provides new observations of the corona in the temperature range of 1 to 2 MK. Temperature studies of the large-scale coronal features extend previous coronagraph work with low-noise temperature maps. Temperatures of radial, extended, plume-like structures in both the polar coronal hole and in a low latitude decaying active region were found to be cooler than the surrounding material. Active region loops were investigated in detail and found to be isothermal for the low loops but hottest at the loop tops for the large loops. Variability of solar EUV structures, as observed in the EIT time sequences, is pervasive and leads to a re-evaluation of the meaning of the term ‘quiet Sun’. Intensity fluctuations in a high cadence sequence of coronal and chromospheric images correspond to a Kolmogorov turbulence spectrum. This can be interpreted in terms of a mixed stochastic or periodic driving of the transition region and the base of the corona. No signature of the photospheric and chromospheric waves is found in spatially averaged power spectra, indicating that these waves do not propagate to the upper atmosphere or are channeled through narrow local magnetic structures covering a small fraction of the solar surface. Polar coronal hole observing campaigns have identified an outflow process with the discovery of transient Fexii jets. Coronal mass ejection observing campaigns have identified the beginning of a CME in an Fexii sequence with a near simultaneous filament eruption (seen in absorption), formation of a coronal void and the initiation of a bright outward-moving shell as well as the coronal manifestation of a ‘Moreton wave’. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1004902913117  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号