首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
天文学   7篇
  2004年   1篇
  2002年   2篇
  2001年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
This paper presents the results of the calculation of spectral and angular characteristics of radiation emitted by the disturbed region after the vertical impacts on the Martian surface of stony meteoroids with radii R 0 from 1 to 100 m at speeds of 11–20 km/s. The time dependences are given for the density of the radiation flux incident on horizontal surface areas located at different distances from the impact point. For small impactors (R 0= 1 m), the heating of the surface and surrounding gas by the radiation impulse from the hot region formed after the impact is insignificant even at the crater edge. However, the radiation impulse that heats up the surface is also emitted during the meteoroid flight through the atmosphere. Although this heating is insufficient to initiate evaporation, heat transfer by turbulent diffusion leads to the formation of a layer with temperatures that substantially exceed the initial temperature of the atmosphere. For large impactors (R 0 = 100 m), the total specific impulse of the plume radiation gives rise to the emergence of the heated layer with a thickness on the order of several meters within several kilometers of the impact point. The formation of this warm layer may lead to the formation of a high-speed jet moving along the Martian surface as well as eddies at the front of the precursor with a subsequent intense rise of dust.  相似文献   
2.
We considered the impacts of very large cosmic bodies (with radii in the range 100–200 to 1000–2000 km) on the early Earth, whose mass, radius and density distribution are close to the current values. The impacts of such bodies were possible during the first hundreds of million years after the formation of the Earth and the Moon. We present and analyze the results of a numerical simulation of the impact of a planetesimal, the size of which is equal to that of the contemporary Moon (1700 km). In three-dimensional computations, the velocity (15 and 30 km/s) and the angle (45°, 60°, and 90°) of the impact are varied. We determined the mass losses and traced the evolution of the shape of the Earth's surface, taking into account the self-consistent gravitational forces that arise in the ejected and remaining materials in accordance with the real, time-dependent mass distribution. Shock waves reflected from the core are shown to propagate from the impact site deep into the Earth. The core undergoes strong, gradually damped oscillations. Although motions in the Earth's mantle gradually decline, they have enough time to put the Earth in a rotational motion. As a result, a wave travels over the Earth's surface, whose amplitude, in the case of an oblique impact, depends on the direction of the wave propagation. The maximum height of this wave is tremendous—it attains several hundred kilometers. Some portion of the ejected material (up to 40% of the impactor mass) falls back onto Earth under the action of gravity. This portion is equivalent to the layer of a condensed material with a thickness on the order of ten kilometers. The appearance of this hot layer should result in a global melting of near-surface layers, which can limit the age of terrestrial rocks by the time of the impact under consideration. For lesser-sized impactors, say, for impactors with radii of about 160 km, the qualitative picture resembles that described above but the amplitude of disturbances is considerably smaller. This amplitude, however, is sufficient to cause a crustal disruption (if such a crust has already formed) and intense volcanic activity.  相似文献   
3.
In November 1999, light flashes were recorded on the Moon at the peak of the Leonid stream activity. It is likely that they were produced by the impacts of the stream particles on the lunar surface. In the present work the impacts of cometary particles are studied by solving a two-dimensional radiative-gasdynamic problem for particles of different sizes and densities; the flux of radiation of postimpact hot gas and plasma is calculated, and the luminous efficiencies are estimated, as are the sizes of the particles which could produce the observed flashes.  相似文献   
4.
Radiation energies of bright flashes caused by disintegration of large meteoroids in the atmosphere have been measured using optical sensors on board geostationary satellites. Light curves versus time are available for some of the events. We have worked out several numerical techniques to derive the kinetic energy of the meteoroids that produced the flashes. Spectral opacities of vapor of various types of meteoroids were calculated for a wide range of possible temperatures and densities. Coefficients of conversion of kinetic energy to radiation energy were computed for chondritic and iron meteoroids 10 cm to 10 m in size using radiation–hydrodynamics numerical simulations. Luminous efficiency increases with body size and initial velocity. Some analytical approximations are presented for average conversion coefficients for irons and H-chondrites. A mean value of this coefficient for large meteoroids (1–10 m in size) is about 5–10%. The theory was tested by analyzing the light curves of several events in detail.Kinetic energies of impactors and energy–frequency distribution of 51 bolides, detected during 22 months of systematic observations in 1994–1996, are determined using theoretical values of luminous efficiencies and heat-transfer coefficients. The number of impacts in the energy range from 0.25 to 4 kt TNT is 25 per year and per total surface of the Earth.The energy–frequency distribution is in a rather good agreement with that derived from acoustic observations and the lunar crater record. Acoustic systems have registered one 1 Mt event in 12 years of observation. Optical systems have not detected such an event as yet due to a shorter time of observation. The probability of a 1 Mt impact was estimated by extrapolation of the observational data.  相似文献   
5.
Impacts of cosmic bodies into oceans and seas lead to the formation of very high waves. Numerical simulations of 3-km and 1-km comets impacting into a 4 km depth ocean with a velocity of 20 km/sec have been conducted. For a 1-km body, depth of the interim crater in the sea bed is about 8 km below ocean level, and the height of the water wave is 10 m at a distance of 2000 km from the impact point. As the water wave runs into shallows, a huge tsunami hits the coast. The height of the wave strongly depends on the coastal and sea bed topography. If the impact occurred near the shore, the huge mass of water strikes the cliffs and the near shore mountain ridges and can cause displacement of the rocks, initiate landslides, and change the relief. Thus, impact into oceans and seas is an important geological factor. Cosmic bodies of small sizes are disrupted by aerodynamic forces. Fragments of a 100-m radius comet striking the water surface create an unstable cavity in the water of about 1 km radius. Its collapse also creates tsunami. A simple estimate has been made using the light curves from recent atmosphere explosions detected by satellites. The results of our assessment of the characteristics of meteoroids which caused these intense light flashes suggests that fragments of a 25-m stony body with initial impact velocity 15 to 20 km/sec will hit the surface. For a 75-m iron body striking the sea with a depth of 600 m, the height of the wave is 10 m at 200–300 km distance from the impact.  相似文献   
6.
Impacts of cosmic bodies into oceans and seas lead to the formation of very high waves. Numerical simulations of 3-km and 1-km comets impacting into a 4 km depth ocean with a velocity of 20 km/sec have been conducted. For a 1-km body, depth of the interim crater in the sea bed is about 8 km below ocean level, and the height of the water wave is 10 m at a distance of 2000 km from the impact point. As the water wave runs into shallows, a huge tsunami hits the coast. The height of the wave strongly depends on the coastal and sea bed topography.If the impact occurred near the shore, the huge mass of water strikes the cliffs and the near shore mountain ridges and can cause displacement of the rocks, initiate landslides, and change the relief. Thus, impact into oceans and seas is an important geological factor.Cosmic bodies of small sizes are disrupted by aerodynamic forces. Fragments of a 100-m radius comet striking the water surface create an unstable cavity in the water of about 1 km radius. Its collapse also creates tsunami.A simple estimate has been made using the light curves from recent atmosphere explosions detected by satellites. The results of our assessment of the characteristics of meteoroids which caused these intense light flashes suggests that fragments of a 25-m stony body with initial impact velocity 15 to 20 km/sec will hit the surface. For a 75-m iron body striking the sea with a depth of 600 m, the height of the wave is 10 m at 200–300 km distance from the impact.  相似文献   
7.
We consider the mechanisms of the formation of dust ejected from craters produced by large-meteoroid impacts on the Martian surface, as well as the mechanisms of the elevation of dust that already existed on the surface, due to impulsed aeolian processes. Detailed numerical calculations of the dust injection, the shock wave propagation, and the formation and evolution of the dust cloud are carried out for vertical impacts of meteoroids with sizes from 1 m to 100 m. The results of these calculations show that dust raised by a 1-m impactor is sufficient to produce a local dust storm, while the mass of dust formed in impacts of large bodies is comparable to the mass of a regional or even a global dust storm. The impact detection rates for 1-, 5-, 20-, and 100-m-sized meteoroids are estimated to be a few impact events per year, one event in every 5–6 years, one event in every 300–800 years, and one event in every 5000–20000 years, respectively. In the last case, the thickness of the global layer of precipitated dust and small fragments, which has been formed through impacts over a period of 107–108 years, is comparable to the thickness of the global dust layer on the Martian surface. In the first case, the mass of raised dust is greater than that for typical dust devils. The speed of impulsed wind at large distances from the impact site is shown to exceed the critical speed at which the blowing-off of dust from the surface begins. Some factors that may enhance the dust ejection have been previously ignored in numerical calculations. We discuss here the role of these factors. The second part of our study deals with the determination of the impact-induced radiation impulse and the estimation of its effect on the rise of dust.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号