首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   0篇
大气科学   1篇
地球物理   6篇
地质学   5篇
海洋学   4篇
天文学   17篇
自然地理   1篇
  2022年   1篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1992年   1篇
排序方式: 共有34条查询结果,搜索用时 31 毫秒
1.
The asymmetry of the magnetic field of the Sun and its manifestation in the interplanetary magnetic field (IMF) are studied. The dominant magnetic polarity of the radial component of the IMF alternates from cycle to cycle, but with an overall systematic dominance of polarity directed toward the Sun. The global asymmetry is also manifest in the component of the IMF perpendicular to the plane of the solar equator. The dominance of positive values of B z together with an appreciable linear trend in the cumulative sum of this quantity is interpreted as a manifestation of a relic solar magnetic field. The strength of this relic magnetic field near the Earth is estimated to be 0.048 ± 0.015 nT, based on the growth of the linear component of the cumulative sum of B z . Time intervals, in which negative values of the B z component of the IMF dominate and enhanced geomagnetic activity is observed, are identified. Our analysis of solar and heliospheric magnetic fields in an integrated representation has enabled us to compare various types of measurements and estimate their stability.  相似文献   
2.
The evolution of the large-scale magnetic field of the Sun has been studied using an algorithm of tomographic inversion. By analyzing line-of-sight magnetograms, we mapped the radial and toroidal components of the Sun??s large-scale magnetic field. The evolution of the radial and toroidal magnetic field components in the 11-year solar cycle has been studied in a time?Clatitude aspect. It is shown that the toroidal magnetic field of the Sun is causally related to sunspot activity; i.e., the sunspot formation zones drift in latitude and follow the toroidal magnetic fields. The results of our analysis support the idea that the high-latitude toroidal magnetic fields can serve as precursors of sunspot activity. The toroidal fields in the current cycle are anomalously weak and also show a barely noticeable equatorward drift. This behavior of the toroidal magnetic field suggests low activity levels in the current cycle and in the foreseeable future.  相似文献   
3.
The development of the solar magnetic activity in cycle 24 has been analyzed. It has been shown that the significant north–south asymmetry of magnetic activity was accompanied by the asynchronous reorganization of solar magnetic fields in the northern and southern hemispheres. The formation of unipolar magnetic regions after the decay of activity centers has been studied. The meridional transport of unipolar magnetic regions leading to changes in the zonal structure of the solar magnetic field has been shown. Long-lived centers of flare activity have been found to exist during the periods of magnetic field restructuring. The spatiotemporal analysis of the flare ensemble making it possible to diagnose non-stationary processes in the solar atmosphere has been shown.  相似文献   
4.
Izvestiya, Atmospheric and Oceanic Physics - In a study of zonally averaged meteorological fields in the middle atmosphere, synchronous oscillations (in phase or antiphase) occupying extended...  相似文献   
5.
A new numerical technique is applied to study long-term variations of total solar irradiance. The background solar flux is estimated not from, e.g., a running mean but as the mode on a moving short time interval. Statistical properties of short-term variations with respect to the running mode are studied. The probability distribution function describing the data from Nimbus-7 is asymmetric and departs from a Gaussian.The ratio of time-integrated short-term negative and positive deviations shows that the energy re-radiated from faculae makes up about 40% of the energy blocked by sunspots. The amplitude and phase relations are studied between deviations which decrease and increase the irradiance. They characterize the mechanism of energy transformation with frequency. The cross-covariance analysis reveals that some parts of the energy blocked by sunspots come to the surface of the Sun after long delays.  相似文献   
6.
A comparative analysis of solar and heliospheric magnetic fields in terms of their cumulative sums reveals cyclic and long-term changes that appear as a magnetic flux imbalance and alternations of dominant magnetic polarities. The global magnetic flux imbalance of the Sun manifests itself in the solar mean magnetic field (SMMF) signal. The north – south asymmetry of solar activity and the quadrupole mode of the solar magnetic field contribute the most to the observed magnetic flux imbalance. The polarity asymmetry exhibits the Hale magnetic cycle in both the radial and azimuthal components of the interplanetary magnetic field (IMF). Analysis of the cumulative sums of the IMF components clearly reveals cyclic changes in the IMF geometry. The accumulated deviations in the IMF spiral angle from its nominal value also demonstrate long-term changes resulting from a slow increase of the solar wind speed over 1965 – 2006. A predominance of the positive IMF B z with a significant linear trend in its cumulative signal is interpreted as a manifestation of the relic magnetic field of the Sun. Long-term changes in the IMF B z are revealed. They demonstrate decadal changes owing to the 11/22-year solar cycle. Long-duration time intervals with a dominant negative B z component were found in temporal patterns of the cumulative sum of the IMF B z .  相似文献   
7.

Observations of the solar photosphere show spatially compact large-amplitude Doppler velocity events with short lifetimes. In data from the Imaging Magnetograph eXperiment (IMaX) on the first flight of the Sunrise balloon in 2009, events with velocities in excess of 4\(\sigma \) from the mean can be identified in both intergranular downflow lanes and granular upflows. We show that the statistics of such events are consistent with the random superposition of strong convective flows and p-mode coherence patches. Such coincident superposition complicates the identification of acoustic wave sources in the solar photosphere, and may be important in the interpretation of spectral line profiles formed in solar photosphere.

  相似文献   
8.
A numerical technique of time-longitude analysis has been developed by studying the fine structure of temporal variations in total solar irradiance (TSI). This analysis produces maps of large-scale thermal inhomogeneities on the Sun and reveals corresponding patterns of radiative excess and deficit relative to the unperturbed solar photosphere. These patterns are organized in two-and four-sector structures and exhibit the effects of both activity complexes and the active longitudes. Large-scale patterns with radiative excess show a facular macrostructure caused by the relaxation of large-scale thermo-magnetic perturbations and/or energy output due to very large-scale solar convection. These thermal patterns are related to long-lived magnetic fields that are characterized by rigid rotation. The patterns with radiative excess tend to concentrate around the active longitudes and are centered at 103° and 277° in the Carrington system when averaged over the time-longitude distribution of thermal inhomogeneities during activity cycles 21–23.  相似文献   
9.
Long-term changes in the magnetic activity of the Sun were studied in terms of the empirical mode decomposition that revealed their essential modes. The occurrence of grand minima was also studied in their relation to long-term changes in sunspot activity throughout the past 11 000 yr. Characteristic timescales of long-term changes in solar activity manifest themselves in the occurrence of grand minima. A quantitative criterion has been defined to identify epochs of grand minima. This criterion reveals the important role of secular and bicentennial activity variations in the occurrence of grand minima and relates their amplitudes with the current activity level, which is variable on a millennial timescale. We have revealed specific patterns in the magnetic activity between successive grand minima which tend to recur approximately every 2300 yr but occasionally alternate with irregular changes. Such intermittent activity behavior indicates low dimensional chaos in the solar dynamo due to the interplay of its dominant modes. The analysis showed that in order to forecast activity level in forthcoming cycles, one should take into account long-term changes in sunspot activity on a ≈2300-yr timescale. The regularities revealed suggest solar activity to decrease in the foreseeable future.  相似文献   
10.
According to the Holton-Tan hypothesis [1], oscillations of the equatorial stratospheric wind change the conditions of the vertical and meridional propagation of planetary waves in extratropical regions, which can cause quasi-biennial oscillations (QBOs) at middle and polar latitudes. To verify the Holton-Tan hypothesis, the intensity of the winter wave activity of the atmosphere in the Northern Hemisphere was estimated at different phases of the quasi-biennial oscillation of the equatorial stratospheric zonal wind. As it turned out, a higher level of the wave activity expected at the easterly phase of the equatorial QBO is characteristic only of the period when the winter circulation is established. At the end of winter a higher level of the wave activity is observed at the westerly QBO phase, which contradicts the Holton-Tan hypothesis. Small but nevertheless noticeable distinctions in the wave activity at low tropospheric levels suggest that the quasi-biennial periodicity of the wave activity at middle latitudes can be caused by oscillations of synoptic processes between the predominantly zonal and meridional forms of the circulation, as was indicated by Pogosyan and Pavlovskaya [2, 3].  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号