首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
地球物理   2篇
地质学   5篇
天文学   17篇
自然地理   1篇
  2019年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2009年   5篇
  2008年   1篇
  2006年   2篇
  2001年   1篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
1.
2.
The twin STEREO spacecraft have been observing the Sun since 2006. Even though STEREO has only been active during solar minimum conditions so far, an important number of coronal mass ejections (CMEs) and their interplanetary counterparts (ICMEs) have been observed. Many of the ICMEs can be linked back to the corresponding CMEs on the Sun through the combination of remote-sensing and in situ observations. This paper aims to answer the question whether a CME observed by a coronagraph will be detected in situ by a spacecraft in a specific location in the heliosphere. We use a flux-rope-like model fit to the STEREO SECCHI/COR2 data to obtain the direction of CME propagation and its geometrical configuration in three dimensions. Based on model parameters, we then calculate their angular widths and determine whether they should have been detected by STEREO-A, STEREO-B, Wind or ACE. We compare the results with corresponding in situ observations of ICMEs. We find that predictions of ICME detections on the base of COR2 data generally match well the actual in situ observations.  相似文献   
3.
Data from the STEREO (Solar Terrestrial Relations Observatory) mission are intensively used for 3D reconstruction of solar coronal structures. After the launch of the SDO (Solar Dynamic Observatory) satellite, its additional observations give the possibility to have a third eye for more accurate 3D reconstruction in the very low corona (<?1.5?R ??). With our reconstruction code MBSR (Multi-view B-spline Stereoscopic Reconstruction), we use three view directions (STEREO A, B, and SDO) to perform the 3D reconstruction and evolution of a prominence which triggered a CME on 1 August 2010. In the paper we present the reconstruction of this prominence from the moment it starts to erupt until it leaves the field of view of the coronagraph. We also determine the evolution of the leading edge of the CME. Based on the temporal evolution, we analyze some of its properties, such as velocity, acceleration, opening and rotation angles and evolution of the cavity.  相似文献   
4.
We present for the first time a three-dimensional reconstruction of the electron density in the corona at distances from 1.5R to 4R using COR1 STEREO observations. The reconstruction is performed using a regularized tomography inversion method for two biweekly periods corresponding to Carrington Rotations 2058 and 2066. Images from the two STEREO spacecraft are used to compare the reconstructed density structures with coronal features located by triangulation. We find that the location of a bright tip of a helmet streamer obtained from the tomographic reconstruction is in good agreement with the location obtained by triangulation. The reconstructed density structure of the equatorial streamer belt is largely consistent with the variation of the current sheet derived from a potential magnetic field extrapolation for most of the equatorial region and for an MHD model of the corona. A zero-value density region in the reconstruction is identified with a low-density region seen in an EUVI image below the reconstruction domain.  相似文献   
5.
The data from SECCHI-COR1 and SECCHI-COR2 coronagraphs onboard the STEREO mission, which was launched in October 2006, provide us with the first-ever stereoscopic images of the Sun’s corona. These observations were found to be useful in inferring the three-dimensional structure of coronal mass ejections (CMEs) and their propagation direction in space. We apply four methods for reconstructing CMEs: i) Forward modeling technique; ii) Local correlation tracking (to identify the same feature in COR Ahead and COR Behind images) plus tie-point reconstruction technique; iii) Center of mass of the structures in a given epipolar plane plus tie-point reconstruction technique; iv) Polarization ratio technique. The four techniques are applied to three structured CMEs observed by COR1 and COR2 instruments, respectively, on 15 May 2007, 31 August 2007, and 25 March 2008. A comparison of the results obtained from the application of the four reconstruction algorithms is presented and discussed.  相似文献   
6.
A complex filament composed by a main body a polar filament and a tail—a small filament situated between active regions, was observed between 6 and 14 January 2001. A decaying active region plays the role of attractor for this filament. We have studied the dynamics of the filament which disappeared in a spectacular CME, produced after a helical up-awarded movement of plasma in the filaments loops.  相似文献   
7.
The Advanced Liquid-mirror Probe of Asteroids, Cosmology and Astrophysics (ALPACA) is a proposed 8-m liquid-mirror telescope surveying  ∼1000 deg2  of the Southern hemisphere sky. It will be a remarkably simple and inexpensive telescope that none the less will deliver a powerful sample of optical data for studying dark energy. The bulk of the cosmological data consist of nightly, high signal-to-noise ratio, multiband light curves of Type Ia supernovae (SNe Ia). At the end of the 3-yr run, ALPACA is expected to collect  ≳100 000  SNe Ia up to   z ∼ 1  . This will allow us to reduce present systematic uncertainties affecting the standard-candle relation. The survey will also provide several other data sets such as the detection of baryon acoustic oscillations in the matter power spectrum and shear weak-lensing measurements. In this preliminary analysis, we forecast constraints on dark energy parameters from SNe Ia and baryon acoustic oscillations. The combination of these two data sets will provide competitive constraints on the dark energy parameters under minimal prior assumptions. Further studies are needed to address the accuracy of weak-lensing measurements.  相似文献   
8.
9.
We compare different methods to reconstruct three-dimensional (3D) coronal mass ejection (CME) morphology. The explored methods include geometric localisation, mask fitting, forward modelling, polarisation ratio, and local correlation tracking plus triangulation. These five methods are applied to the same CME event that occurred on 7 August 2010. Their corresponding results are presented and compared, especially in their propagation direction and spatial extent in 3D. We find that the mask fitting and geometric localisation methods produce consistent results. Reconstructions including three-view observations are more precise than reconstructions done with only two views. Compared to the forward modelling method, in which an a priori shape of the CME geometry is assumed, the mask fitting has more flexibility. The polarisation ratio method makes use of the Thomson scattering geometry. We find that spatially the 3D CME derived from the mask fitting lies mostly in the overlap region obtained with the polarisation method using data from STEREO. In addition, the mask fitting can help resolve the front/back ambiguity inherent in the polarisation ratio method. However, the local correlation tracking plus triangulation did not show consistent results with the other four methods. This method performed poorly, primarily because the two STEREO spacecraft had a large angular separation. Under these circumstances, it is difficult to identify points taken from independent images that correspond to the same physical feature. Excluding the local correlation tracking method, the latitude of the CME??s centre of gravity derived from the other methods deviates within 1°, and the longitude differs within 19°.  相似文献   
10.
The purpose of this research was to evaluate the production rate (PR) and cutting performance of surface miners (SM) based on rock properties and specific energy (SE). We use data from equipment manufacturers and experimental data in this study and propose a new method and equations to determine both the PR and the cutting speed of SM. The unconfined compressive strength (UCS) of the rock, its abrasivity, and the machine’s engine power are the three most important factors influencing the PR. Moreover, the cutting depth, UCS, and engine power have a significant impact on the cutting speed. We propose a new method and equations to determine the energy required to cut a volume unit and a surface unit, i.e., specific energy, and establish the relationship between SE, UCS, and PR. The results of this study can be used by surface miner operators to evaluate the applicability of the machines to a specific mine site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号