首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
天文学   7篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1991年   1篇
  1990年   1篇
  1983年   1篇
排序方式: 共有7条查询结果,搜索用时 187 毫秒
1
1.
The inverse scattering problem for reconstruction of the structure of reflecting potential from the observed frequency dependence of the phase shift of reflected acoustic waves is considered. The linearized formulation of the ill-posed inverse problem is used, which is solved using a perturbation technique. The potential perturbation of the standard model as a combination of five B-splines leads to a constructive solution of the discrepancy problem between the observational and theoretical frequencies of the 5-min oscillations. The discrepancy is reduced by an order of magnitude. The corresponding change of the shape of the reflecting potential is interpreted as a requirement of a general increase of convection efficiency in the standard solar model. In this way, the agreement of the oscillation frequencies of high degree is also improved.  相似文献   
2.
3.
Vorontsov  S. V.  Marchenkov  K. I. 《Solar physics》1983,82(1-2):215-222
Solar Physics - Normal mode spectra and neutrino counting rates are calculated for a set of chemically-inhomogeneous solar models. Each model has a core with a high concentration of heavy elements;...  相似文献   
4.
We present low-ℓ rotational p-mode splittings from the analysis of 8 yr of observations made by the Birmingham Solar-Oscillations Network (BiSON) of the full solar disc. These data are presented in the light of a thorough investigation of the fitting techniques used to extract them. Particular attention is paid to both the origin and magnitude of bias present in these estimates. An extensive Monte Carlo strategy has been adopted to facilitate this study – in all, several thousand complete, artificial proxies of the 96-month data set have been generated to test the analysis of real 'full-disc' data. These simulations allow for an assessment of any complications in the analysis which might arise from variations in the properties of the p modes over the 11-yr solar activity cycle.
The use of such an extended data set affords greater precision in the splittings, and by implication the rotation rate inferred from these data, and reduces bias inherent in the analysis, thereby giving a more accurate determination of the rotation. The grand, weighted sidereal average of the BiSON set is     , a value consistent with that expected were the deep radiative interior     to rotate at the same frequency, and in the same 'rigid' manner, as the more precisely and accurately studied outer part of the radiative zone.  相似文献   
5.
6.
7.
The data obtained for the heights of the relief and the external gravitational field of Venus for spherical harmonics with degree and order up to 18 allow one to start theoretical analysis of the crust-mantle boundary (Venusian Moho) and stress state of the planetary interior. We suppose that Venusian convection is confined by floating massive crust. Apparently the convection in the upper mantle of Venus is separated from that one in the lower mantle and its lateral scale must be essentially smaller than on Earth. So, the convection is reflected to a larger degree of the gravitational field of the planet than for Earth. The spherical harmonic expansion of the topography for Venus correlates with corresponding expansion of the non-equilibrium part of the gravitational potential for n = 3–18. At the same time the relief of Venus is significantly compensated. It is reasonable to suppose that the gravity field for these harmonics is due to crustal thickness variations and, probably, to variations of crustal density. Thus, in the proposed scheme the Moho's relief causes the partial isostatic compensation of the topography.All calculations are carried out for the series of realistic models of Venus taking into consideration an asthenosphere. The asthenosphere is modeled either by a weakened (shear modulus is reduced), or by a liquid inviscid layer. We also suppose that the asthenosphere extends from the base of crust to a depth of 418 km, and the density contrast across the Moho boundary is –0.4 g * cm–3. If the actual density contrast across the Moho is less than the supposed one by some factor, then one must increase the amplitudes of the roots and inverse roots by the same factor. The results for the Moho's relief and stresses in the crust are presented for the case of the mean thickness of the crust of 50 km, which satisfies the probable upper (connected with phase transitions in waterless basalts) and lower (appearing in the framework of our interpretation) limits.On the whole, the crust-mantle boundary on Venus is evidently smooth, and the stress level in the crust is appreciably smaller than the crustal stresses on the Earth. The strong sensitivity of the stresses character to the parameters of the model of external layers of Venus together with geological data allow us to begin a preliminary investigation of the tectonical structure and geodynamics of the planet.'Geology and Tectonics of Venus', special issue edited by Alexander T. Basilevsky (USSR Acad. of Sci. Moscow), James W. Head (Brown University, Providence), Gordon H. Pettengill (MIT, Cambridge, Massachusetts) and R. S. Saunders (J.P.L., Pasadena).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号