首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
天文学   2篇
  2000年   1篇
  1994年   1篇
排序方式: 共有2条查询结果,搜索用时 31 毫秒
1
1.
Lozitsky  V.G.  Baranovsky  E.A.  Lozitska  N.I.  Leiko  U.M. 《Solar physics》2000,191(1):171-183
I±V and I±Q profiles of nine spectral lines of Fei, Feii, and Hi in the 2B flare of 16 June 1989 have been analyzed. Two bright flare knots outside and inside of a spot were investigated. To measure the true magnetic field strength in the flare, two different methods were applied. In addition to these data, the magnetic field and thermodynamic conditions were determined using the non-LTE program for line profile synthesis. According to the measurements, the magnetic field in both flare knots changed in synchronism and non-monotonically, and reached its peak (nearly 1.6 kG for non-spot areas and approximately 4.0 kG for sunspot locations) at the time of flare peak. For the flare knot outside the spot, a background field component was also detected; the magnetic field in this component was found to have mixed polarity and remained practically unchanged during the flare. The non-LTE calculations show that the unique local magnetic field peak existed near the temperature minimum zone in the flare peak too. The observed perturbations do not exclude such phenomena as a magnetic field transient in flare.  相似文献   
2.
I ±V profiles of the Fei 5247 and 5250 lines in the 2B flare of June 16, 1989 have been analyzed. A bright knot of the flare outside the sunspot where the central intensity of H reached a peak value of 1.4 (relative to the continuum) has been explored. The Fei 5250/Fei 5247 magnetic line ratio based on the StokesV peak separations of these lines at five evolutionary phases of the flare (including the start of the flare, the flash phase, the peak and 16 min after the peak) has been analyzed. It was found that the StokesV peak separation for the Fei 5250 line was systematically larger than that of the Fei 5247 line. This is evidence for the presence in the flare of small-scale flux tubes with kG fields. The flux tube magnetic field strength was about 1.1 kG at the start of the flare and during the flash phase, 1.55 kG during the peak, and 1.38 kG 16 min after the peak. The filling factor,, appears to decrease monotonically during the flare.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号