首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41761篇
  免费   8601篇
  国内免费   12977篇
测绘学   4306篇
大气科学   7758篇
地球物理   9780篇
地质学   24892篇
海洋学   5518篇
天文学   1622篇
综合类   4414篇
自然地理   5049篇
  2024年   239篇
  2023年   729篇
  2022年   2024篇
  2021年   2354篇
  2020年   1853篇
  2019年   2301篇
  2018年   2316篇
  2017年   2119篇
  2016年   2387篇
  2015年   2373篇
  2014年   2533篇
  2013年   2668篇
  2012年   2775篇
  2011年   3146篇
  2010年   3007篇
  2009年   2826篇
  2008年   2304篇
  2007年   2306篇
  2006年   2170篇
  2005年   1998篇
  2004年   2134篇
  2003年   1662篇
  2002年   1464篇
  2001年   1381篇
  2000年   1240篇
  1999年   1508篇
  1998年   1343篇
  1997年   1243篇
  1996年   1057篇
  1995年   912篇
  1994年   838篇
  1993年   898篇
  1992年   767篇
  1991年   522篇
  1990年   330篇
  1989年   318篇
  1988年   279篇
  1987年   193篇
  1986年   145篇
  1985年   99篇
  1984年   73篇
  1983年   56篇
  1982年   74篇
  1981年   50篇
  1980年   42篇
  1979年   45篇
  1978年   17篇
  1977年   21篇
  1976年   21篇
  1958年   31篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Macrophyte community diversity and composition respond to ecosystem conservation and local environmental factors. In this study, we developed a multidimensional diversity framework for macrophyte communities, including the taxonomic and functional alpha and beta diversity. We used the framework to explore the relationships among water level regimes and these diversity parameters in a case study of China's Baiyangdian Lake. Analysis of indicators of hydrologic alteration divided the water level from 1959 to 2019 into four regimes (dry, <6.42 m; low, 6.42–7.23 m; medium, 7.23–8.19 m; high, >8.19 m). Alpha and beta diversity were significantly higher in the medium regime than in the low and high regimes. Redundancy analysis indicated that the maximum water depth significantly affected taxonomic alpha diversity, and total nitrogen (TN) and chemical oxygen demand (COD) concentration significantly affected functional alpha diversity, respectively. Mantel tests showed that TN, Secchi depth (SD), and water depth in the high water level regime significantly increased the total beta diversity and turnover components. TN was the main factor that increased total taxonomic beta diversity. Water level regime mainly influenced interspecific relationships by changing the TN and COD concentration. The water level should be maintained between the medium and high water level regimes to promote restoration of the macrophyte community and improve ecosystem stability. The biodiversity evaluation framework would provide a deeper insight into the hydrological process management for restoration of aquatic macrophyte communities in shallow lakes.  相似文献   
2.
The geodynamic mechanism of the late Early Cretaceous magmatic flare‐up in the collisional zone between the Lhasa and Qiangtang terranes in Tibet is controversial because of a scarcity of robust evidence. To address this problem, we report geochronological, geochemical and Hf isotopic data for the newly discovered Gufeng gabbros from the Duolong Cu–Au mineral district of the western Bangong–Nujiang Suture Zone (BNSZ). The gabbro samples, dated at 126.3 ± 1.8 Ma, show geochemical similarities to typical ocean island basalt (OIB) and have positive εHf(t) values of +3.3 to +6.9. The gabbros were generated by decompression melting of deep upwelling asthenosphere. This event is best explained by slab break‐off and the resultant development of a slab window beneath central Tibet.  相似文献   
3.
Difficulties are involved in discrete element method (DEM) modelling of the flexible boundary, that is, the membranes covering the soil sample, which can be commonly found in contemporary laboratory soil tests. In this paper, a novel method is proposed wherein the finite difference method (FDM) and DEM are coupled to simulate the rubber membrane and soil body, respectively. Numerical plane strain and triaxial tests, served by the flexible membrane, are implemented and analysed later. The effect of the membrane modulus on the measurement accuracy is considered, with analytical formulae derived to judge the significance of this effect. Based on an analysis of stress-strain responses and the grain rotation field, the mechanical performances produced by the flexible and rigid lateral boundaries are compared for the plane strain test. The results show that (1) the effect of the membrane on the test result becomes more significant at larger strain level because the membrane applies additional lateral confining pressure to the soil body; (2) the tested models reproduce typical stress and volumetric paths for specimens with shear bands; (3) for the plane strain test, the rigid lateral boundary derives a much higher peak strength and larger bulk dilatation, but a similar residual strength, compared with the flexible boundary. The latter produces a more uniform (or ‘diffuse') rotation field and more mobilised local kinematics than does the former. All simulations show that the proposed FDM-DEM coupling method is able to simulate laboratory tests with a flexible boundary membrane.  相似文献   
4.
In this study, a directional interpolation infinite element suited to a saturated porous medium is presented to account for dynamic problems with semi-infi  相似文献   
5.
Reservoirs of lowland floodplain rivers with eutrophic backgrounds cause variations in the hydrological and hydraulic conditions of estuaries and low-dam reservoir areas, which can promote planktonic algae to proliferate and algal bloom outbreaks. Understanding the ecological effects of variations in hydrological and hydraulic processes in lowland rivers is important for algal bloom control. In this study, the middle and lower reaches of the Han River, China, a typical regulated lowland river with a eutrophic background, are selected. Based on the effect of hydrological and hydraulic variability on algal blooms, a hydrological management strategy for river algal bloom control is proposed. The results showed that (a) differences in river morphology and background nutrient levels cause significant differences in the critical threshold flow velocities for algal bloom outbreaks between natural river and low-dam reservoir sections; there is no uniform threshold flow velocity for algal bloom control. (b) There are significant differences in the river hydrological/hydraulic conditions between years with and without algal blooms. The average river flow, water level and velocity in years with algal blooms are significantly lower than those in years without algal blooms. (c) For different river sections where algal blooms occur and to meet the threshold flow velocities, the joint operation of cascade reservoirs and diversion projects is an effective method to prevent and control algal blooms in regulated lowland rivers. This study is expected to deepen our understanding of the ecological significance of special hydrological processes and guide algal bloom management in regulated lowland rivers.  相似文献   
6.
We investigate our ability to assess transfer of hexavalent chromium, Cr(VI), from the soil to surface runoff by considering the effect of coupling diverse adsorption models with a two‐layer solute transfer model. Our analyses are grounded on a set of two experiments associated with soils characterized by diverse particle size distributions. Our study is motivated by the observation that Cr(VI) is receiving much attention for the assessment of environmental risks due to its high solubility, mobility, and toxicological significance. Adsorption of Cr(VI) is considered to be at equilibrium in the mixing layer under our experimental conditions. Four adsorption models, that is, the Langmuir, Freundlich, Temkin, and linear models, constitute our set of alternative (competing) mathematical formulations. Experimental results reveal that the soil samples characterized by the finest grain sizes are associated with the highest release of Cr(VI) to runoff. We compare the relative abilities of the four models to interpret experimental results through maximum likelihood model calibration and four model identification criteria (i.e., the Akaike information criteria [AIC and AICC] and the Bayesian and Kashyap information criteria). Our study results enable us to rank the tested models on the basis of a set of posterior weights assigned to each of them. A classical variance‐based global sensitivity analysis is then performed to assess the relative importance of the uncertain parameters associated with each of the models considered, within subregions of the parameter space. In this context, the modelling strategy resulting from coupling the Langmuir isotherm with a two‐layer solute transfer model is then evaluated as the most skilful for the overall interpretation of both sets of experiments. Our results document that (a) the depth of the mixing layer is the most influential factor for all models tested, with the exception of the Freundlich isotherm, and (b) the total sensitivity of the adsorption parameters varies in time, with a trend to increase as time progresses for all of the models. These results suggest that adsorption has a significant effect on the uncertainty associated with the release of Cr(VI) from the soil to the surface runoff component.  相似文献   
7.
The Three Gorges Project is the world's largest water conservancy project. According to the design standards for the 1,000‐year flood, flood diversion areas in the Jingjiang reach of the Yangtze River must be utilized to ensure the safety of the Jingjiang area and the city of Wuhan. However, once these areas are used, the economic and life loss in these areas may be very great. Therefore, it is vital to reduce this loss by developing a scheme that reduces the use of the flood diversion areas through flood regulation by the Three Gorges Reservoir (TGR), under the premise of ensuring the safety of the Three Gorges Dam. For a 1,000‐year flood on the basis of a highly destructive flood in 1954, this paper evaluates scheduling schemes in which flood diversion areas are or are not used. The schemes are simulated based on 2.5‐m resolution reservoir topography and an optimized model of dynamic capacity flood regulation. The simulation results show the following. (a) In accord with the normal flood‐control regulation discharge, the maximum water level above the dam should be not more than 175 m, which ensures the safety of the dam and reservoir area. However, it is necessary to utilize the flood diversion areas within the Jingjiang area, and flood discharge can reach 2.81 billion m3. (b) In the case of relying on the TGR to impound floodwaters independently rather than using the flood diversion areas, the maximum water level above the dam reaches 177.35 m, which is less than the flood check level of 180.4 m to ensure the safety of the Three Gorges Dam. The average increase of the TGR water level in the Chongqing area is not more than 0.11 m, which indicates no significant effect on the upstream reservoir area. Comparing the various scheduling schemes, when the flood diversion areas are not used, it is believed that the TGR can execute safe flood control for a 1,000‐year flood, thereby greatly reducing flood damage.  相似文献   
8.
ABSTRACT

High performance computing is required for fast geoprocessing of geospatial big data. Using spatial domains to represent computational intensity (CIT) and domain decomposition for parallelism are prominent strategies when designing parallel geoprocessing applications. Traditional domain decomposition is limited in evaluating the computational intensity, which often results in load imbalance and poor parallel performance. From the data science perspective, machine learning from Artificial Intelligence (AI) shows promise for better CIT evaluation. This paper proposes a machine learning approach for predicting computational intensity, followed by an optimized domain decomposition, which divides the spatial domain into balanced subdivisions based on the predicted CIT to achieve better parallel performance. The approach provides a reference framework on how various machine learning methods including feature selection and model training can be used in predicting computational intensity and optimizing parallel geoprocessing against different cases. Some comparative experiments between the approach and traditional methods were performed using the two cases, DEM generation from point clouds and spatial intersection on vector data. The results not only demonstrate the advantage of the approach, but also provide hints on how traditional GIS computation can be improved by the AI machine learning.  相似文献   
9.
Soil salinization, caused by salt migration and accumulation underneath the soil surface, will corrode structures. To analyze the moisture-salt migration and salt precipitation in soil under evaporation conditions, a mathematical model consisting of a series of theoretical equations is briefly presented. The filling effect of precipitated salts on tortuosity factor and evaporation rate are taken into account in relevant equations. Besides, a transition equation to link the solute transport equation before and after salt precipitation is proposed. Meanwhile, a new relative humidity equation deduced from Pitzer ions model is used to modify the vapor transport flux equation. The results show that the calculated values are in good agreement with the published experimental data, especially for the simulation of volume water content and evaporation rate of Toyoura sand, which confirm the reliability and applicability of the proposed model.  相似文献   
10.
用 1 5个随机引物对建鲤基因组DNA进行RAPD分析 ,结果显示 ,建鲤群体内的遗传相似系数为 0 91 81± 0 0 73 8,多态位点比例为 0 41 67,平均杂合度为 0 1 884。表明建鲤种质较纯 ,群体内的遗传变异程度较小。建鲤优良性状产生的分子学基础是等位基因的杂合程度较高  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号