首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地球物理   2篇
天文学   3篇
  2016年   1篇
  2009年   1篇
  2007年   1篇
  2003年   1篇
  2001年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
The analyzed amplitude and phase variations in electromagnetic VLF and LF signals at 20–45 kHz, received in Moscow, Graz (Austria), and Sheffield (UK) during the total solar eclipse of March 20, 2015, are considered. The 22 analyzed paths have lengths of 200—6100 km, are differently oriented, and cross 40–100% occultation regions. Fifteen paths crossed the region where the occultation varied from 40 to 90%. Solar eclipse effects were found only on one of these paths in the signal phase (–50°). Four long paths crossed the 90–100% occultation region, and signal amplitude and phase anomalies were detected for all four paths. Negative phase anomalies varied from–75° to–90°, and the amplitude anomalies were both positive and negative and were not larger than 5 dB. It was shown that the effective height of the ionosphere varied from 6.5 to 11 km during the eclipse.  相似文献   
2.
Morente et al. [Morente, J.A., Portí, J.A., Salinas, A., Navarro, E.A., 2008. Icarus. doi:10.1016/j.icarus.2008.02.004] have recently presented a new analysis of the Permittivity, Wave and Altimetry (PWA) measurements made during the descent of the Huygens Probe through the atmosphere of Titan. They claimed the identification of several Schumann resonance harmonics and concluded in favor of a lightning activity on Titan. We report here several reasons for not endorsing this paper.  相似文献   
3.
A numerical modeling of the electromagnetic characteristics of Titan’s atmosphere is carried out by means of the TLM numerical method, with the aim of calculating the Schumann resonant frequencies of Saturn’s satellite. The detection and measurement of these resonances by the Huygens probe, which will enter Titan’s atmosphere at the beginning of 2005, is expected to show the existence of electric activity with lightning discharges in the atmosphere of this satellite. As happens with the Schumann frequencies on Earth, losses associated with electric conductivity will make these frequencies lower than theoretically expected, the fundamental frequency being located between 11 and 15 Hz. This numerical study also shows that the strong losses associated to the high conductivity make it impossible for an electromagnetic wave with a frequency of 10 MHz or lower, generated near the surface, to reach the outer part of Titan’s atmosphere.  相似文献   
4.
The low-frequency data collected with the antenna of the Permittivity, Wave and Altimetry experiment on board the Huygens Probe that landed on Titan on 14 January 2005 have been thoroughly analyzed considering different possible natural and artificial effects. Although a definite conclusion is still subject to the outcome of complementary inquiries, it results from our analysis that the observations can be explained, for the most part, in term of natural phenomena rather than being artifacts. Extremely-low frequency waves generated in the ionosphere of Titan, driven by the corotating Saturn's frozen plasma flow, are assumed to be the most likely source for the observation of the second eigenmode of a Schumann-like resonance at around 36 Hz in the moon-ionosphere cavity. This particular mode is thought to be enhanced with respect to other harmonics because of the particular location of the landing site with respect to that of the supposed sources. The power budget of the observed wave amplitude seems to be consistent with a rough model of the global current of the wake-ionosphere circuit. Broadband low-frequency noise events which are observed sporadically during the descent are probably due to shot noise on the antenna when the Probe is crossing aerosol clouds, an interpretation supported by post-flight ground tests. Contrary to the situation encountered on Earth, atmospheric lightning does not appear to be the source of a conventional Schumann resonance on Titan.  相似文献   
5.
The permittivity wave and altimetry (PWA) instrument is a part of the CASSINI/HUYGENS HASI experiment and was designed to determine the electrical parameters of the atmosphere of Titan in 2004. In December 1995, a balloon campaign was conducted in León, Spain, to test the HASI onboard hardware and software using a HUYGENS probe mock-up in an electromagnetic-disturbance-free environment (mainly from power emission lines at 50 Hz). This work is concerned with the measurements of small ion polar conductivities and DC fields using the PWA relaxation probes (RP). The two RP electrodes were periodically set to ±5 V relative to the conductive surface of the mock-up and allowed to discharge in the surrounding atmosphere. The polar components of conductivity are calculated from the discharge time, and the DC field from the floating potential differences once the electrodes reach equilibrium. In spite of some observed effects, such as mock-up charging or oscillations in the measurement of potential, the conductivity measurements are coherent and in good agreement with the obtained results in other experiments. The conductivity data were collected in ‘fair-weather’ conditions, up to 30 km during a 4-h flight, every 72 s, giving an altitude resolution better than 400 m. We also discuss the DC field data that do not lead, in presence of charging effects, to a straightforward measurement of the natural DC field. The Comas Solá balloon flight, first real test of the PWA experiment in the terrestrial atmosphere, confirmed the validity of the ionic conductivity measurements but raised the problem of a reliable interpretation of the DC field.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号