首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   0篇
地质学   13篇
天文学   36篇
  2020年   4篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   4篇
  2003年   2篇
  2002年   4篇
  2001年   3篇
  1999年   2篇
  1996年   1篇
  1995年   1篇
  1977年   1篇
排序方式: 共有49条查询结果,搜索用时 0 毫秒
1.
A special system of canonical variables is considered. An algorithm for expanding the principal functions of Keplerian motion in new elements is presented. The advantage of the proposed system is a relatively small number of terms in the classical expansions of the unperturbed two-body problem. A method for expanding the time derivatives of the rectangular coordinates is proposed. Some estimates of the number of terms in the presented expansions have been obtained through numerical experiments.  相似文献   
2.
In the present paper, we used the Hori-Deprit method to construct the averaged Hamiltonian of the two-planetary problem accurate to the second order of a small parameter, the generating function of the transform, the change of variables formulas, and the right-hand sides of the equations in average elements. The evolution of the two-planet Sun-Jupiter-Saturn system was investigated by numerical integration over 10 billion years. The motion of the planets has an almost periodic character. The eccentricities and inclinations of Jupiter’s and Saturn’s orbits remain small but different from zero. The short-term disturbances remain small over the entire period considered in the study.  相似文献   
3.
On the Distance Function Between Two Keplerian Elliptic Orbits   总被引:1,自引:0,他引:1  
The problem of finding critical points of the distance function between two Keplerian elliptic orbits is reduced to the determination of all real roots of a trigonometric polynomial of degree 8. The coefficients of the polynomial are rational functions of orbital parameters. Using computer algebra methods we show that a polynomial of a smaller degree with such properties does not exist. This fact shows that our result cannot be improved and it allows us to construct an optimal algorithm to find the minimal distance between two Keplerian orbits. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
4.
In ephemeridical astronomy, an important role is played by the kinematic equation relating time and position in the orbit. Since the ephemerides have already been calculated for many hundreds of thousands of celestial bodies moving along more or less known orbits, close to optimal algorithms for solving this equation are required. We consider the case of near-parabolic motion, for which Euler found an elegant form for the kinematic equation, to be insufficiently thoroughly studied. Earlier, we presented a solution of this equation using a series in powers of the small parameter introduced by Euler with timedependent coefficients. In the current study, we find the region of convergence of this series.  相似文献   
5.
Dust comnplexes make one of the components of the Solar System. The surface shape of a typical dust complex consisting of particles ejected by a celestial body is found analytically, under reasonable assumptions (the main one being the smallness of perturbations). Parametric equations of the surface are obtained. The main properties of the surface are established and studied. Singular points are found, and the topological type of the surface as a whole and in the vicinity of the singular points (one conic points and one constriction) is examined.  相似文献   
6.
The study of the evolution of planetary systems, primarily of the Solar System, is one of the basic problems of celestial mechanics. The stability of motion of giant planets on cosmogonic time scales was established by numerical and analytical methods, but the question about the evolution of orbits of terrestrial planets and arbitrary solar-type planetary systems remained open. This work initiates a series of papers allowing one to advance in solving the problem of the evolution of the solar-type planetary systems on cosmogonic time scales by using powerful analytical tools. In the first paper of this series, we choose the optimum reference system and obtain the Poisson series expansion of the Hamiltonian of the problem in all Keplerian elements. We propose to use the integral representation of the corresponding coefficients or the Poisson processor means instead of conventionally addressing any possible special functions. This approach extremely simplifies the algorithm. The next paper of this series deals with the calculation of the expansion coefficients.  相似文献   
7.
According to the classical theory of equilibrium figures surfaces of equal density, potential and pressure concur (let call them isobars). Isobars may be represented by means of Liapunov power series in small parameter q, up to the first approximation coincident with centrifugal to gravitational force ratio on the equator. A. M. Liapunov has proved the existence of the universal convergence radius q : above mentioned series converge for all bodies if q < q . Using Liapunov's algorithm and symbolic calculus tools we have calculated q = 0.000370916. Evidently, convergence radius q 0 may be much greater in non-pathological situations. We plan to examine several simplest cases. In the present paper, we find q 0 for homogeneous liquid. The convergence radius turns out to be unexpectedly large coinciding with the upper boundary value q 0 = 0.337 for Maclaurin ellipsoids.  相似文献   
8.
One means of countering a hazardous asteroid is discussed: destruction of the object using a nuclear charge. Explosion of such an asteroid shortly before its predicted collision would have catastrophic consequences, with numerous highly radioactive fragments falling onto the Earth. The possibility of exploding the asteroid several years before its impact is also considered. Such an approach is made feasible because the vast majority of hazardous objects pass by the Earth several times before colliding with it. Computations show that, in the 10 years following the explosion, only a negligible number of fragments fall onto the Earth, whose radioactivity has substantially reduced during this time. In most cases, none of these fragments collides with the Earth. Thus, this proposed method for eliminating a threat from space is reasonable in at least two cases: when it is not possible to undergo a soft removal of the object from the collisional path, and to destroy objects that are continually returning to near-Earth space and require multiple removals from hazardous orbits.  相似文献   
9.
In the paper by Kholshevnikov and Vassilie, 1999, (see also references therein) the problem of finding critical points of the distance function between two confocal Keplerian elliptic orbits (hence finding the distance between them in the sense of set theory) is reduced to the determination of all real roots of a trigonometric polynomial of degree eight. In non-degenerate cases a polynomial of lower degree with such properties does not exist. Here we extend the results to all possible cases of ordered pairs of orbits in the Two–Body–Problem. There are nine main cases corresponding to three main types of orbits: ellipse, hyperbola, and parabola. Note that the ellipse–hyperbola and hyperbola–ellipse cases are not equivalent as we exclude the variable marking the position on the second curve. For our purposes rectilinear trajectories can be treated as particular (not limiting) cases of elliptic or hyperbolic orbits.  相似文献   
10.
The outer gravitational potential V of the level ellipsoid of revolution T is uniquely determined by two quantities: the eccentricity \(\varepsilon \) of the ellipsoid and Clairaut parameter q, proportional to the angular velocity of rotation squared and inversely proportional to the mean density of the ellipsoid. Quantities \(\varepsilon \) and q are independent, though they lie in a rather strict two-dimensional domain. It follows that Stokes coefficients \(I_n\) of Laplace series representing the outer potential of T are uniquely determined by \(\varepsilon \) and q. In this paper, we have found explicit expressions for Stokes coefficients via \(\varepsilon \) and q, as well as their asymptotics when \(n\rightarrow \infty \). If T does not coincide with a Maclaurin ellipsoid, then \(|I_n|\sim B\varepsilon ^n/n\) with a certain constant B. Let us compare this asymptotics with one of \(I_n\) for ellipsoids constrained by the only condition of increasing (even nonstrict) of oblateness from the centre to the periphery: \(|I_n|\sim \bar{B}\varepsilon ^n/(n^2)\). Hence, level ellipsoids with ellipsoidal equidensites do not exist. The only exception represents Maclaurin ellipsoids. It should be recalled that we confine ourselves by ellipsoids of revolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号