首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   280篇
  免费   13篇
  国内免费   3篇
测绘学   2篇
大气科学   18篇
地球物理   57篇
地质学   106篇
海洋学   19篇
天文学   84篇
自然地理   10篇
  2020年   6篇
  2019年   4篇
  2018年   12篇
  2017年   7篇
  2016年   7篇
  2015年   8篇
  2014年   7篇
  2013年   9篇
  2012年   7篇
  2011年   6篇
  2010年   9篇
  2009年   8篇
  2008年   12篇
  2007年   10篇
  2006年   7篇
  2005年   7篇
  2004年   7篇
  2003年   11篇
  2002年   4篇
  2001年   5篇
  2000年   9篇
  1999年   4篇
  1998年   9篇
  1997年   9篇
  1996年   7篇
  1995年   10篇
  1994年   4篇
  1993年   4篇
  1992年   5篇
  1991年   7篇
  1989年   3篇
  1988年   7篇
  1987年   3篇
  1986年   5篇
  1985年   2篇
  1984年   8篇
  1983年   3篇
  1980年   2篇
  1978年   3篇
  1977年   3篇
  1976年   3篇
  1974年   5篇
  1973年   4篇
  1971年   3篇
  1970年   2篇
  1969年   2篇
  1968年   4篇
  1960年   2篇
  1955年   1篇
  1949年   1篇
排序方式: 共有296条查询结果,搜索用时 15 毫秒
1.
2.
Between June 2004 and September 2004 a temporary seismic network was installed on the northern insular shelf of Iceland and onshore in north Iceland. The seismic setup aimed at resolving the subsurface structure and, thus, the geodynamical transition from Icelandic crust to typical oceanic crust along Kolbeinsey Ridge. The experiment recorded about 1,000 earthquakes. The region encloses the Tjörnes Fracture Zone containing the Husavik–Flatey strike-slip fault and the extensional seismic Grimsey Lineament. Most of the seismicity occurs in swarms offshore. Preliminary results reveal typical mid-ocean crust north of Grimsey and a heterogeneous structure with major velocity anomalies along the seismic lineaments and north–south trending subsurface features. Complementary bathymetric mapping highlight numerous extrusion features along the Grimsey Lineament and Kolbeinsey Ridge. The seismic dataset promises to deliver new insights into the tectonic framework for earthquakes in an extensional transform zone along the global mid-ocean ridge system.  相似文献   
3.
4.
5.
6.
Vitrinite reflectance (Rr), proximate analysis and carbon isotope composition (δ13C) have been used to characterise coal samples from two zones of Late Carboniferous sediments (Gastern and Ferden) in the Aar massif where they are penetrated by the Lötschberg base tunnel (constructed between 1999 and 2005). Samples are characterised by variable ash yields (21.7–93.9%; dry basis); those with ash yields of less than ~50% and with volatile matter content (V;dry ash-free basis) within the limits 2 < V% ≤ 8 are anthracite. Values of Rr range from 3.89% to 5.17% and indicate coalification to the rank of anthracite and meta-anthracite in both Gastern and Ferden Carboniferous zones. Samples of anthracite and shale from the Gastern Carboniferous exhibit a relatively small range in δ13C values (–24.52‰ to –23.38‰; mean: –23.86‰) and are lighter than anthracite samples from the Ferden Carboniferous (mean: –22.20‰). The degree of coalification in the Gastern and Ferden Carboniferous zones primarily depends on the maximum rock temperature (T) attained as a result of burial heating. Vitrinite reflectance based estimates of T range from ~290° –360 °C. For a proposed palaeogeothemal gradient of 25 ° C/km at the time of maximum coalification the required overburden is attributable to relatively thin autochtonous Mesozoic/Cenozoic sedimentary cover of the Aar massif and Gastern granite and deep tectonic burial beneath advancing Helvetic, Ultrahelvetic and Prealpine (Penninic) nappes in Early Oligocene to Miocene.  相似文献   
7.
We studied the dissolved silica cycle in the water column of the North basin of Lake Lugano, Switzerland/Italy. Lake Lugano is a meromictic, eutrophic lake, permanently stratified below 100-m depth. A one-box model was used to calculate a silica mass-balance over 1993, based on various lake measurements, such as sediment traps, sediment cores, water analysis and biota countings. We found that the North basin of Lake Lugano is at steady state as far as dissolved silica is concerned. The primary source of dissolved silica in the lake is river input (about 80%), with diffusion from bottom sediments and groundwater input also playing a role. Atmospheric input is negligible. The main export of dissolved silica occurs via biogenic uptake by diatoms and final burial of their frustules in the bottom sediment. Loss of dissolved silica through the lake outflow only represents 15% of the total output. Of the total amount of Si exported to the lake bottom through diatom sinking, less than 20% is re-supplied to the surface water by diffusion. Thus, the lake acts as an important permanent sink for silica. The long residence time of dissolved silica in the lake (7 years) is related to the strong physical stratification of the lake. Only about 10% of the standing stock are available to phytoplankton uptake.  相似文献   
8.
Diatoms, Cladocera, and chironomids preserved in the sediments of Lake Dalgoto were studied to reconstruct the history of the lake ecosystem in the context of the vegetation history as represented by the pollen stratigraphy. Younger Dryas silty sediments at the base of the core are characterized by low diversity of aquatic organisms. The transition to the Holocene is indicated by a sharp change from silt to clay-gyttja. The migration and expansion of trees at lower elevations between 10200 and 8500 14C-yr BP, along with higher diversities and concentrations of aquatic organisms and the decreased proportion of north-alpine diatoms, point to rapidly rising summer temperatures. After 6500 14C-yr BP the expansion of Pinus mugo in the catchment coincides with signs of natural eutrophication as recorded by an increase of planktonic diatoms. In the late Holocene (4000–0 14C-yr BP) Pinus peuce and Abies are reduced and Picea expands. Cereal grains and disturbance indicators suggest late-Holocene human modification of the vegetation.  相似文献   
9.
 Mantle peridotites of the Internal Liguride (IL) units (Northern Apennines) constitute a rare example of the depleted lithosphere of the Jurassic Ligurian Tethys. Detailed chemical (ICP-MS and SIMS techniques) and isotopic investigations on very fresh samples have been performed with the major aim to constrain the timing and mechanism of their evolution and to furnish new data for the geodynamic interpretation. The data are also useful to discuss some general geochemical aspects of oceanic-type mantle. The studied samples consist of clinopyroxene-poor spinel lherzolites, showing incipient re-equilibration in the plagioclase-facies stability field. The spinel-facies assemblage records high (asthenospheric) equilibration temperatures (1150–1250° C). Whole rocks, and constituent clinopyroxenes, show a decoupling between severe depletion in highly incompatible elements [light rare earth elements (LREE), Sr, Zr, Na, Ti] and less pronounced depletion in moderate incompatible elements (Ca, Al, Sc, V). Bulk rocks also display a relatively strong M(middle)REE/H(heavy)REE fractionation. These compositional features indicate low-degree (<10%) fractional melting, which presumably started in the garnet stability field, as the most suitable depletion mechanism. In this respect, the IL ultramafics show strong similarity to abyssal peridotites. The Sr and Nd isotopic compositions, determined on carefully handpicked clinopyroxene separates, indicate an extremely depleted signature (87Sr/86Sr=0.702203–0.702285; 143Nd/144Nd=0.513619–0.513775). The Sm/Nd model ages suggest that the IL peridotites melted most likely during Permian times. They could record, therefore, the early upwelling and melting of mid ocean ridge basalt (MORB) type asthenosphere, in response to the onset of extensional mechanisms which led to the opening of the Western Tethys. They subsequently cooled and experienced a composite subsolidus evolution testified by multiple episodes of gabbroic intrusions and HT-LP retrograde metamorphic re-equilibration, prior to their emplacement on the sea floor. The trace element chemistry of IL peridotites also provides useful information about the composition of oceanic-type mantle. The most important feature concerns the occurrence of Sr and Zr negative anomalies (relative to “adjacent” REE) in both clinopyroxenes and bulk rocks. We suggest that such anomalies reflect changes in the relative magnitude of Sr, Zr and REE partition coefficients, depending on the specific melting conditions. Received: 15 February 1995/Accepted: 4 August 1995  相似文献   
10.
This study has investigated the use of the artificial sweetener acesulfame and the magnetic resonance imaging contrast agent gadolinium as quantitative tracers for river water infiltration into shallow groundwater. The influence of a river on alluvial groundwater in a subalpine catchment in western Europe has been assessed using the ‘classical’ hydrochemical tracer chloride and the trace contaminants acesulfame and anthropogenic gadolinium. Mixing ratios for riverine bank filtrate with ambient groundwater and the uncertainties associated with the temporal and spatial tracer variability were calculated using acesulfame and gadolinium and compared with those obtained using chloride. The temporal variability of tracer concentrations in river water of gadolinium (standard deviation SD: 63%) and acesulfame (SD: 71%) both exceeded that of chloride (SD: 27%), and this was identified as the main source of uncertainty in the mixing analysis. Similar spatial distributions were detected in the groundwater for chloride and gadolinium, but not for acesulfame. Mixing analyses using acesulfame resulted in calculated mixing ratios that differed from those obtained using gadolinium and chloride by up to 83% and 92%, respectively. At the investigated site, which had oxic conditions and moderate temperatures, acesulfame was found to be a less reliable tracer than either gadolinium or chloride, probably because of natural attenuation and input from other sources. There was no statistically significant difference between the mixing ratios obtained using chloride or gadolinium, the mixing ratios obtained using gadolinium were 40–50% lower than those obtained using chloride. This is mainly due to a bias of the mean gadolinium concentration in river water towards higher values. In view of the uncertainties of the two tracers, neither could be preferred over the other for the quantification of bank filtrate in groundwater. At this specific site gadolinium was able to reliably identify river water infiltration and was a more precise tracer than chloride at low mixing ratios (<20%), because of the exclusive occurrence of gadolinium in river water and its high dynamic range. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号