首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
地质学   1篇
天文学   4篇
  2023年   2篇
  2017年   1篇
  2013年   1篇
  2005年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
We studied the occurrence of secondary minerals and inferred their formation in the Yamato-000593 Martian meteorite using multiple technological approaches such as electron probe micro analysis, optical microscope, Raman spectroscopy, scanning electron microscopy, as well as Fourier transform-infrared microscopy and spectroscopy. Two separate hydrothermal alteration events and their sequence of formation (based on superpositional relationship) can be identified: an elevated temperature phase producing high-temperature sulfidic hydrothermal alteration and a lower temperature hydrothermal alteration phase by iron-rich fluids. This meteorite shows signatures more compatible with magmatic effects, rather than impact-induced hydrothermal alteration, as has been proposed earlier. The sulfidic alteration probably formed by magmatic hydrothermal fluids, whereas iron-rich hydrothermal fluid circulation after a possible early impact event has also been proposed, when the fluids cooled down to 50 °C. Most of the secondary minerals formed at alkaline-neutral conditions, and the few observed signatures (clay–silica-bearing veins, siderite-iron-oxide veins) of briny conditions are probably from local spatial effects in larger cavities. The ferrous minerals (hematite and siderite) along the fractures could be crystallized from Fe-HCO3-bearing fluids. Alternatively, the primary magmatic minerals could have been oxidized easily (Fe-rich olivines, magnetite) during the cooling to iron oxides (hematite, goethite). The results suggest the possible existence of at least ephemerally habitable environments on Mars, mainly at volcanically heated locations. Following published geochemical models, the carbonates formed within acidic-circumneutral condition, which was followed by formation of phyllosilicates in alkaline condition.  相似文献   
2.
Thin levels of amphibolites from the Canigou, Albères and Cap de Creus massifs have been studied in order to investigate their pressure and temperature evolution during time. P and T values have been calculated using the amphibole–plagioclase–quartz thermo-barometer. Si, Al, Mg and Fe of zoned amphiboles have been analysed from core to rim by microprobe. By combining the results obtained from several (or different) crystals, PTt paths have been determined using the amphibole-plagioclase-quartz equilibriums. In the Canigou Massif, the amphibolites have recorded anti-clockwise PTt paths around a peak of metamorphism located at about 650?°C–6.1 kbar, whereas in the Albères Massif, the calculated PTt paths of amphibolites near the paragneisses are retrograde only, from 600?°C–5 kbar to 450?°C–2.5 kbar, but one cummingtonite-bearing amphibolite has also recorded an anti-clockwise evolution around 650?°C–4.5 kbar. The retrograde PTt paths recorded for amphibolites from the ‘Cap de Creus’ Massif are retrograde only, from 650?°C–6 kbar and 400?°C–1 kbar. To cite this article: C. Triboulet et al., C. R. Geoscience 337 (2005).  相似文献   
3.
Highly forsteritic olivine (Fo: 99.2–99.7) in the Kaba meteorite emits bright cathodoluminescence (CL). CL spectra of red luminescent forsterite grains have two broad emission bands at approximately 630 nm (impurity center of divalent Mn ions) in the red region and above 700 nm (trivalent Cr ions) in the red–IR region. The cores of the grains show CL blue luminescence giving a characteristic broad band emission at 400 nm, also associated with minor red emissions related to Mn and Cr ions. CL color variation of Kaba forsterite is attributed to structural defects. Electron probe microanalyzer (EPMA) analysis shows concentrations of Ca, Al, and Ti in the center of the forsterite grain. The migration of diffusible ions of Mn, Cr, and Fe to the rim of the Kaba meteoritic forsterite was controlled by the hydrothermal alteration at relatively low temperature (estimated at about 250 °C), while Ca and Al ions might still lie in the core. A very unusual phase of FeO (wüstite) was also observed, which may be a terrestrial alteration product of FeNi‐metal.  相似文献   
4.
The NWA 5491 CV3 meteorite is a CVoxA subtype, and composed of two substantially different units (titled “upper” and “lower” units) in the cm size range with original accreted material and also subsequent alteration produced features. Based on the large chondrules in the “upper” unit and the small chondrules plus CAIs in the “lower” unit, they possibly accreted material from different parts of the solar nebula and/or at different times, whereas substantial changes happened in the nebula's composition. Differences are observed in the level of early fragmentation too, which was stronger in the upper units. During later alteration oxidizing fluids possibly circulated only in the upper unit, mechanical fragmentation and resorption were also stronger there. In the last phase of the geological history these two rock units came into physical contact, but impact‐driven shock effects were not observed. The characteristics of this meteorite provide evidence that the same parent body might accrete substantially different material and also the later processes could differ spatially in the parent body.  相似文献   
5.
The analysis of the Csatalja H4 chondrite (which was found in August 2012) suggests shock-related textures and spatial inhomogeneities, indicating a complex geological history. In the most heavily fractured and sheared units, small opaque grains and older fractures have locally enhanced the shock effect, producing melt. While the impact textures were evident in most units of the meteorite, mechanical shearing is apparent in only two units, suggesting that these units might have been present at somewhat different locations inside the parent body. Shearing also occurred at the border of the so-called xenolith unit, confirming its mechanical mixing with the other units. Besides fragmentation and melting, chemical changes due to impact have also been identified, producing compositional homogenization of olivines in 30% of the investigated area of the sample's thin section (23 mm2), and moderate accumulation of Fe, Ca, and Na in the strongly shocked zones, initiating crystallization of feldspar in veins with a specific spatial distribution (feldspar glass with metal–sulfide globules). Analyzing the high PT minerals, the peak shock pressure and temperature values differed substantially in the various units, ranging between 2 and 17 GPa, 100 and >1200 °C. The xenolith unit crystallized more slowly after the impact event and does not show shock impact alterations, suggesting that it was formed in a deeper region of the parent body. This was later shifted to its current surroundings and was lithified (fixed) to the rest of the sample. This “randomly selected” Csatalja sample provides information on the range of the formation temperatures, pressures, and processes that contributed to the heterogeneity of meteorites at the mm spatial scale, in general. The identified heterogeneity is a result not purely of the shock effects but also of the different pre-shock structural characteristics. The shock also mixed fragments mechanically that have been formed at different environments, with at least several dozens or even 100 m depth in the parent body.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号