首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
天文学   4篇
  2009年   1篇
  2005年   1篇
  2000年   1篇
  1998年   1篇
排序方式: 共有4条查询结果,搜索用时 78 毫秒
1
1.
Abstract— Puerto Lápice is a new eucrite fall (Castilla‐La Mancha, Spain, 10 May 2007). In this paper, we report its detailed petrography, magnetic characterization, mineral and bulk chemistry, oxygen and noble gas isotope systematics, and radionuclide data. Study of four thin sections from two different specimens reveal that the meteorite is brecciated in nature, and it contains basaltic and granulitic clasts, as well as recrystallized impact melt and breccia fragments. Shock veins are ubiquitous and show evidence of at least three different shock events. Bulk chemical analyses suggest that Puerto Lápice belongs to the main group of basaltic eucrites, although it has a significantly higher Cr content. Oxygen isotopes also confirm that the meteorite is a normal member of the HED suite. Noble gas abundances show typical patterns, with dominant cosmogenic and radiogenic contributions, and indicate an average exposure age of 19 ± 2 Ma, and a Pu‐fission Xe age well within typical eucrite values. Cosmogenic radionuclides suggest a preatmospheric size of about 20–30 cm in diameter.  相似文献   
2.
Abstract— The reaction between kamacite grains and H2 + CO gas mixture has been tested in the laboratory under experimental conditions presumed for interplanetary dust particle (IDP) formation in a nebular-type environment (H2:CO = 250:1; 5 × 10?4 atm total pressure, and 473 K). Carbon deposition, hydrocarbon production in the C1–C4 range, and the formation of an ?-carbide phase occur when well-defined model FeNi bcc alloy (kamacite) particles are exposed to a mixture of H2 + CO during 103 h. These results strongly support the idea that gas-solid reactions in the solar nebula during CO hydrogenation represent a plausible scenario for the formation of carbides and carbonaceous materials in IDPs, as well as for the production of hydrocarbons through Fischer-Tropsch-type reactions.  相似文献   
3.
Abstract— An impressive daylight fireball was observed from Spain, Portugal, and the south of France at 16h46m45s UTC on January 4, 2004. The meteoroid penetrated into the atmosphere, generating shock waves that reached the ground and produced audible booms. The associated airwave was recorded at a seismic station located 90 km north of the fireball trajectory in Spain, and at an infrasound station in France located 750 km north‐east of the fireball. The absolute magnitude of the bolide has been determined to be ?18 ± 1 from a casual video record. The energy released in the atmosphere determined from photometric, seismic, and infrasound data was about 0.02 kilotons (kt). A massive fragmentation occurred at a height of 28 ± 0.2 km, resulting in a meteorite strewn field of 20 × 6 km. The first meteorite specimen was found on January 11, 2004, near the village of Villalbeto de la Peña, in northern Palencia (Spain). To date, about 4.6 kg of meteorite mass have been recovered during several recovery campaigns. The meteorite is a moderately shocked (S4) L6 ordinary chondrite with a cosmic‐ray‐exposure age of 48 ± 5 Ma. Radioisotope analysis shows that the original body had a mass of 760 ± 150 kg, which is in agreement with the estimated mass obtained from photometric and seismic measurements.  相似文献   
4.
Abstract— Detailed laboratory studies have been carried out in order to simulate the interaction between nanometer‐sized kamacite metal particles and different gas mixtures consisting of H2:H2S (250:0.1), H2:CO (250:1), and H2:CO:H2S (250:1:0.1) under nebular‐type conditions (5 × 10?4 atm and 473 K). Reaction of H2 + H2S with kamacite particles for 1000 h leads to the formation of pyrrhotite. Incorporation of CO into the gaseous reactant mixture results in the formation of both sulfide and carbide phases. At the same time, amorphous C is deposited onto the metal particles and organic molecules are evolved, namely hydrocarbons and thiols in the C1‐C5 and C1‐C2 range, respectively. Carbon deposition and production of organics are enhanced with respect to experiments performed with H2 + CO, where a carbide phase is formed. There is no evidence for the existence of S‐poisoning effects on the metal‐catalysed hydrogenation of CO through Fischer‐Tropsch‐type reactions in nebular environments. In fact, it is experimentally demonstrated that S‐containing organic species could be synthesized by such reactions from nebular gas.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号