首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
地球物理   3篇
地质学   2篇
天文学   16篇
自然地理   2篇
  2014年   1篇
  2009年   1篇
  2008年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2002年   3篇
  2001年   1篇
  1985年   2篇
  1984年   1篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
1.
High‐resolution historical (1942) and recent (1994) digital terrain models were derived from aerial photographs along the Big Sur coastline in central California to measure the long‐term volume of material that enters the nearshore environment. During the 52‐year measurement time period, an average of 21 000 ± 3100 m3 km?1 a?1 of material was eroded from nine study sections distributed along the coast, with a low yield of 1000 ± 240 m3 km?1 a?1 and a high of 46 700 ± 7300 m3 km?1 a?1. The results compare well with known volumes from several deep‐seated landslides in the area and suggest that the processes by which material is delivered to the coast are episodic in nature. In addition, a number of parameters are investigated to determine what influences the substantial variation in yield along the coast. It is found that the magnitude of regional coastal landslide sediment yield is primarily related to the physical strength of the slope‐forming material. Coastal Highway 1 runs along the lower portion of the slope along this stretch of coastline, and winter storms frequently damage the highway. The California Department of Transportation is responsible for maintaining this scenic highway while minimizing the impacts to the coastal ecosystems that are part of the Monterey Bay National Marine Sanctuary. This study provides environmental managers with critical background data on the volumes of material that historically enter the nearshore from landslides, as well as demonstrating the application of deriving historical digital terrain data to model landscape evolution. Published in 2005 by John Wiley & Sons, Ltd.  相似文献   
2.
Hydrogen ion irradiation of powdered igneous rocks, including Apollo rocks, has been observed in the laboratory to darken the powders and to make their optical properties similar to the Moon's. An extensive series of investigations shows that this darkening is not spurious. These results are consistent with those of other investigators, including Nash (1967). Darkening of lunar igneous rock powders by the formation of solar wind-sputtered glass films is a real process which occurs on the Moon. The time scale for darkening of undisturbed lunar soil is of the order of 50000–100000 yr. Comparison of the rates of the formation of glasses on the lunar surface by solar wind sputter-deposition, meteorite impact melting and impact vaporization-deposition indicates that these processes are of comparable importance under the present flux of meteorites. Thus the formation of glass by sputter-deposition must be regarded as a major process on the lunar surface.Paper dedicated to Professor Harold C. Urey on the occasion of his 80th birthday on 29 April 1973.  相似文献   
3.
4.
Bruce Hapke 《Icarus》2002,157(2):523-534
A model published previously by the author that describes light scattering from particulate media is modified to include several improvements: (1) a better approximation to the Ambartsumian-Chandrasekhar H-functions that is especially important for particles with single scattering albedos close to 1.00, (2) increased accuracy for anisotropically scattering particles, and (3) incorporation of coherent backscattering. The goal of the original model of being analytic and mathematically tractable is preserved. No new parameters are introduced by the first and second modifications; however, the third unavoidably adds two new parameters: the amplitude and width of the coherent backscatter opposition effect. Several examples are given in which the results of calculations using the original and new models are compared with exact numerical computations.It is shown that a medium composed of complex particles that are large compared to the wavelength can have a coherent backscatter opposition effect (CBOE) that is broad enough to be readily observable. The CBOE multiplies the entire reflectance and not just the multiply scattered component, so that a low-albedo medium, such as lunar regolith, can have a strong CBOE.  相似文献   
5.
The physics of scattering of electromagnetic waves by media in which the particles are in contact, such as planetary regoliths, has been thought to be relatively well understood when the particles are larger than the wavelength. However, this is not true when the particles are comparable with or smaller than the wavelength. We have measured the scattering parameters of planetary regolith analogs consisting of suites of well-sorted abrasives whose particles ranged from larger to smaller than the wavelength. We measured the variation of reflectance as the phase angle varied from 0.05° to 140°. The following parameters of the media were then deduced: the single scattering albedo, single scattering phase function, transport mean free path, and scattering, absorption, and extinction coefficients. A scattering model based on the equation of radiative transfer was empirically able to describe quantitatively the variation of intensity with angle for each sample. Thus, such models can be used to characterize scattering from regoliths even when the particles are smaller than the wavelength. The scattering parameters were remarkably insensitive to particle size. These results are contrary to theoretical predictions, but are consistent with earlier measurements of alumina abrasives that were restricted to small phase angles. They imply that a basic assumption made by virtually all regolith scattering models, that the regolith particles are the fundamental scattering units of the medium, is incorrect. Our understanding of scattering by regoliths appears to be incomplete, even when the particles are larger than the wavelength.  相似文献   
6.
This article examines the interplay of gender, caste‐religion, and household survival strategy formation among Christian and Muslim fisher folk in the south Indian state of Kerala. The methodology consisted of surveys of forty‐one households in two villages in which data pertaining to male and female work patterns and other household level data were collected in the summer of 1999. My analysis demonstrates how particular ideologies of gender and work associated with different caste‐religion communities influence the strategies individual households adopt. I discuss intersections between gender and caste‐religion with other socioeconomic factors and illustrate the manner in which gender then gets reworked in particular ways in the course of economic transformation.  相似文献   
7.
Predictions of two widely-used regolith reflectance models, a numerically exact computer code and an approximate analytic equation, based on the equation of radiative transfer were tested against the measured reflectance of a medium of close-packed spheres, whose properties supposedly can be well-characterized. Surprisingly, the approximate analytic model was a better match to the experimental data than the numerically exact computer solution. Other approximate regolith models were tested briefly with similar results. Discrepancies between the two models and between models and experiment can be explained if the phase functions and albedos of the spheres are not the same as when the particles are isolated. Differences include the absence of the Fraunhoffer diffraction peak, which is an intrinsic assumption of the approximate analytical model but not the exact numerical model, and increased scattering in the mid-range of phase angles, which the approximate analytic model fortuitously describes more accurately than the exact numerical model. These changes may be caused by the close proximity of surrounding particles. If they are taken into account, models based on the radiative transfer equation appear able to quantitatively predict the reflectances of regoliths and other particulate media. Interparticle perturbations are also predicted to cause a coherent backscatter opposition effect in the backward direction that was observed, but its angular width was found to be much larger than predicted by theories for sparsely-packed media.  相似文献   
8.
We find the lunar darkening process could be due neither to simple addition of impact-melted glass nor to addition of devitrified glass to crushed lunar rock. There is evidence that lunar soil grains have thin, very light-absorbing coatings that mask absorption bands, seen in the reflection spectra of freshly crushed lunar rock, in the same manner as they are masked in the spectra of lunar soils. We believe the processes that produce these coatings are (1) deposition of atoms sputtered from lunar soil grains by solar wind particles and (2) deposition of vapor species vaporized from lunar soil grains by micrometeorite impacts. Coatings produced in laboratory simulations of these processes owe their strong light-absorbing properties in large part to the presence of abundant metallic Fe grains smaller than 100 Å in diameter. Another process, which depends on implantation of solar wind protons in lunar soil grains and their later mobilization during micrometeorite impacts to produce metallic Fe in the impact glass, also seems reasonable but has not yet been demonstrated experimentally. As a result of impact vaporization the Moon would preferentially lose minor amounts of light elements, principally monatomic oxygen, and this would result in oxygen depletion in the vapor condensate. This type of fraction would be more extreme on airless bodies with lower escape velocities. Sputtering occurs at higher effective temperatures and this would cause loss of all common rock-forming elements in approximately equal amounts. There would be some bias in this process toward retention of very heavy trace elements— a characteristic that has been observed in the lunar soil. This bias would be less important for smaller airless bodies. We describe an apparent new type of fractionation that occurs during deposition of sputtered atoms. This fractionation favors retention of higher mass atoms over lower mass atoms, and appears to be a linear function of mass. This may explain observed isotopic fractionations in lunar soil, in which the heavier isotope always appears to be enriched relative to the lighter one. This “first bounce fractionation” process should operate on all airless bodies. Na and K apparently do not conform to this fractionation process and have a much greater tendency to escape. This may help explain the presence of high Na concentrations around Io.  相似文献   
9.
The response of a barrier island to an extreme storm depends in part on the surge elevation relative to the height and extent of the foredunes which can exhibit considerable variability alongshore. While it is recognized that alongshore variations in dune height and width direct barrier island response to storm surge, the underlying causes of the alongshore variation remain poorly understood. This study examines the alongshore variation in dune morphology along a 11 km stretch of Santa Rosa Island in northwest Florida and relates the variation in morphology to the response of the island during Hurricane Ivan and historic and storm-related rates of shoreline erosion. The morphology of the foredune and backbarrier dunes was characterized before and after Hurricane Ivan using Empirical Orthogonal Function (EOF) analysis and related through Canonical Correlation Analysis (CCA). The height and extent of the foredune, and the presence and relative location of the backbarrier dunes, varied alongshore at discrete length scales (of ~ 750, 1450 and 4550 m) that are statistically significant at the 95% confidence level. Cospectral analysis suggests that the variation in dune morphology is correlated with transverse ridges on the inner-shelf, the backbarrier cuspate headlands, and the historical and storm-related trends in shoreline change. Sections of the coast with little to no dune development before Hurricane Ivan were observed in the narrowest portions of the island (between headlands), west of the transverse ridges. Overwash penetration tended to be larger in these areas and island breaching was common, leaving the surface close to the watertable and covered by a lag of shell and gravel. In contrast, large foredunes and the backbarrier dunes were observed at the widest sections of the island (the cuspate headlands) and at crest of the transverse ridges. Due to the large dunes and the presence of the backbarrier dunes, these areas experienced less overwash penetration and most of the sediment from the beachface and dunes was deposited within the upper-shoreface. It is argued that this sediment is returned to the beachface through nearshore bar migration following the storm and that the areas with larger foredunes and backbarrier dunes have smaller rates of historical shoreline erosion compared to areas with smaller dunes and greater transfer of sediment to the washover terrace. Since the recovery of the dunes will vary depending on the availability of sediment from the washover and beachface, it is further argued that the alongshore pattern of dune morphology and the response of the island to the next extreme storm is forced by the transverse ridges and island width through alongshore variations in storm surge and overwash gradients respectively. These findings may be particularly important for coastal managers involved in the repair and rebuilding of coastal infrastructure that was damaged or destroyed during Hurricane Ivan.  相似文献   
10.
Bruce Hapke 《Icarus》2008,195(2):918-926
It is well known that the bidirectional reflectance of a particulate medium such as a planetary regolith depends on the porosity, in contrast to predictions of models based on the equation of radiative transfer as usually formulated. It is shown that this failure to predict porosity dependence arises from an incorrect treatment of the light that passes between the particles. In this paper a more physically correct treatment that takes account of the necessity of preventing particles from interpenetrating is used together with the two-stream approximation to solve the radiative transfer equation and derive improved expressions for the bidirectional and directional-hemispherical reflectances. It is found that increasing the filling factor (decreasing the porosity) increases the reflectance of low and medium albedo powders, but decreases it for ones with very high albedos. The model agrees qualitatively with measured data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号