首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
天文学   22篇
  2022年   1篇
  2019年   1篇
  2016年   2篇
  2014年   1篇
  2013年   3篇
  2012年   4篇
  2011年   1篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
排序方式: 共有22条查询结果,搜索用时 31 毫秒
1.
The first results of the construction of a three-dimensional reddening map for stars within 1600 pc of the Sun are presented. Analysis of the distribution of 70 million stars from the 2MASS catalog with the most accurate photometry on the (J-Ks)-Ks diagram supplemented with Monte Carlo simulations has shown that one of the maxima of this distribution corresponds to F-type dwarfs and subgiants with a mean absolute magnitude M Ks = 2 m 5. The shift of this maximum toward large J-Ks with increasing Ks reflects the reddening of these stars with increasing heliocentric distance. The distribution of the sample of stars over Ks, l, and b cells with a statistically significant number of stars in each cell corresponds to their distribution over three-dimensional spatial cells. As a result, the reddening E(J-Ks) has been determined with an accuracy of 0· m 03 for spatial cells with a side of 100 pc. All of the known large absorbing clouds within 1600 pc of the Sun have manifested themselves in the results obtained. The distances to the near and far edges of the clouds have been determined with a relative accuracy of 15%. The cases where unknown clouds are hidden behind known ones on the same line of sight have been found. The distance dependence of reddening is considered for various Galactic latitudes and longitudes. The absorbing matter of the Gould Belt is shown to manifest itself at latitudes up to 40° and within 600 pc of the Sun. The size and influence of the Gould Belt may have been underestimated thus far. The absorbing matter at latitudes up to 60° and within 1600 pc of the Sun has been found to be distributed predominantly in the first and second quadrants in the southern hemisphere and in the third and fourth quadrants in the northern hemisphere. The warping of the absorbing layer in the near Galaxy apparently manifests itself in this way. A nonrandom orientation of the clouds relative to the Sun is possible. The mass of the baryonic dark matter in solar neighborhoods can then be considerably larger than is generally believed.  相似文献   
2.
The Data Release 1 of the Radial-Velocity Experiment (RAVE DR1 1, 24748 stars) (PCRV, 35 495 stars) is compared with the May 15, 2006 version of the Pulkovo Compilation of Radial Velocities (PCRV, 35 495 stars). RAVE DR1 includes mostly 9–13 m stars, while the PCRV contains brighter stars. Analysis of the “RAVE minus PCRV” radial-velocity differences for 14 common stars has revealed no systematic dependences on any factors, except the effect due to the RAVE radial-velocity zero-point offset known from the RAVE observations. This effect shows up for ten of these stars observed on a single night as a sine wave with an amplitude of 1.5 km s?1 in the dependence of the radial-velocity difference on the ordinal number of the optical fiber used and, accordingly, on the star position angle in the field of view of the RAVE instrument. The detection of this dependence confirms a high radial-velocity accuracy in both catalogs: on average, better than 1 km s?1 for stars brighter than 10m (for the RAVE, after applying a correction for the zero-point offset). The RAVE zero-point offset can be corrected for with an accuracy better than 1 km s?1 by observing several PCRV stars in each RAVE frame and by analyzing the “RAVE minus PCRV” radial-velocity differences.  相似文献   
3.
The sample of 37 485 suspected OB stars selected by Gontcharov (2008) from the Tycho-2 catalogue has been cleaned of the stars that are not of spectral types OV-A0V. For this purpose, the apparent magnitude V T from Tycho-2, the absolute magnitude $M_{V_T }$ calibrated as a function of the dereddened color index (B T ? V T )0, the interstellar extinction $A_{V_T }$ calculated from the 3D analytical model by Gontcharov (2009) as a function of the Galactic coordinates, and the photometric distance r ph calculated as a function of V T , $M_{V_T }$ , and $A_{V_T }$ have been reconciled in an iterative process. The 20 514 stars that passed the iterations have (B T ? V T )0 < 0 and $M_{V_T }$ > ?5 and are considered as a sample of OV-A0V stars complete within 350 pc of the Sun. Based on the theoretical relation between the dereddened color and age of the stars, the derived sample has been divided into three subsamples: (B T ? V T )0 < ?0.2, ?0.2 < (B T ? V T )0 < ?0.1, and ?0.1 < (B T ? V T )0 < 0, younger than 100, 100?C200, and 200?C400 Myr, respectively. The spatial distribution of all 20 514 stars and the kinematics analyzed for more than 1500 stars with radial velocities from the PCRV and RAVE catalogues are different for the subsamples, showing smooth rotations, shears, and deformations of the layer of gas producing stars with the formation of the Gould Belt, the Great Tunnel, the Local Bubble, and other structures within the last 200 Myr. The detected temporal variations of the velocity dispersions, solar motion components, Ogorodnikov-Milne model parameters, and Oort constants are significant, agree with the results of other authors, and show that it is meaningless to calculate the kinematic parameters for samples of stars with uncertain ages or with a wide range of ages.  相似文献   
4.
Astronomy Letters - We compare the spatial stellar color variations with our three-dimensional analytical model of the spatial dust distribution to refine the properties of the dust layer in...  相似文献   
5.
A new analytical 3D model of interstellar extinction within 500 pc of the Sun as a function of the Galactic spherical coordinates is suggested. This model is physically more justified than the widely used Arenou model, since it takes into account the presence of absorbing matter both in the layer along the equatorial Galactic plane and in the Gould Belt. The extinction in the equatorial layer varies as the sine of the Galactic longitude and in the Gould Belt as the sine of twice the longitude in the Belt plane. The extinction across the layers varies according to a barometric law. It has been found that the absorbing layers intersect at an angle of 17° and that the Sun is located near the axial plane of the absorbing layer of the Gould Belt and is probably several parsecs below the axial plane of the equatorial absorbing layer but above the Galactic plane. The model has been tested using the extinction of real stars from three catalogs.  相似文献   
6.
The Pulkovo Compilation of Radial Velocities (PCRV) has been made to study the stellar kinematics in the local spiral arm. The PCRV contains weighted mean absolute radial velocities for 35 495 Hipparcos stars of various spectral types and luminosity classes over the entire celestial sphere mainly within 500 pc of the Sun. The median accuracy of the radial velocities obtained is 0.7 km s?1. Results from 203 publications were used in the catalogue. Four of them were used to improve the radial velocities of standard stars from the IAU list. The radial velocities of 155 standard stars turned out to be constant within 0.3 km s?1. These stars were used to analyze 47 768 mean radial velocities for 37 200 stars from 12 major publications (~80% of all the data used). Zero-point discrepancies and systematic dependences on radial velocity, B-V color index, right ascension, and declination were found in radial velocity differences of the form “publication minus IAU list of standards.” These discrepancies and dependences were approximated and taken into account when calculating the weighted mean radial velocities. 1128 stars whose independent radial-velocity determinations were available at least in three of these publications and agreed within 3 km s?1 were chosen as the work list of secondary standards. Radial-velocity differences of the form “publication minus list of secondary standards” were used by analogy to correct the zero points and systematic dependences in the radial velocities from 33 more publications (~ 13% of the data used). In addition, the radial velocities from 154 minor publications (~7% of the data used) pertaining to well-known instruments were used without any corrections.  相似文献   
7.
The Tycho-2 proper motions and Tycho-2 and 2MASS photometry are used to select 97348 red giant clump (RGC) stars. The interstellar extinction and photometric distance are calculated for each of the stars. The selected stars are shown to form a selection-unbiased sample of RGC stars within about 350 pc of the Sun with the addition of more distant stars. The distribution of the selected stars in space and their motion are consistent with the assumption that the RGC contains Galactic disk stars with various ages and metallicities, including a significant fraction of stars younger than 1 Gyr with masses of more than 2M . These young stars show differences of their statistical characteristics from those of older RGC stars, including differences in the variations of their distribution density with distance from the Galactic plane and in the dispersion of their velocities found using radial velocities and proper motions. The Sun has been found to rise above the Galactic plane by 13 ± 1 pc. The distribution density of the stars under consideration in space is probably determined by the Local Spiral Arm and the distribution of absorbing matter in the plane of the Gould Belt.  相似文献   
8.
9.
A new method for selecting stars in the Galactic bar based on 2MASS infrared photometry in combination with stellar proper motions from the Kharkiv XPM catalogue has been implemented. In accordance with this method, red clump and red giant branch stars are preselected on the color-magnitude diagram and their photometric distances are calculated. Since the stellar proper motions are indicators of a larger velocity dispersion toward the bar and the spiral arms compared to the stars with circular orbits, applying the constraints on the proper motions of the preselected stars that take into account the Galactic rotation has allowed the background stars to be eliminated. Based on a joint analysis of the velocities of the selected stars and their distribution on the Galactic plane, we have confidently identified the segment of the Galactic bar nearest to the Sun with an orientation of 20°–25° with respect to the Galactic center-Sun direction and a semimajor axis of no more than 3 kpc.  相似文献   
10.
Infrared photometry in the J (1.2 µm), H (1.7 µm), Ks (2.2 µm) bands from the 2MASS catalogue and in the W1 (3.4 µm), W2 (4.6 µm), W3 (12 µm), W4 (22 µm) bands from the WISE catalogue is used to reveal the spatial variations of the interstellar extinction law in the infrared near the midplane of the Galaxy by the method of extrapolation of the extinction law applied to clump giants. The variations of the coefficients E(H ? W1)/E(H ? Ks), E(H ? W2)/E(H ? Ks), E(H ? W3)/E(H ? Ks), and E(H ? W4)/E(H ? Ks) along the line of sight in 2° × 2° squares of the sky centered at b = 0° and l = 20°, 30°, ..., 330°, 340° as well as in several 4° × 4° squares with |b| = 10° are considered. The results obtained here agree with those obtained by Zasowski et al. in 2009 using 2MASS and Spitzer-IRAC photometry for the same longitudes and similar photometric bands, confirming their main result: in the inner (relative to the Sun) Galactic disk, the fraction of fine dust increases with Galactocentric distance (or the mean dust grain size decreases). However, in the outer Galactic disk that was not considered by Zasowski et al., this trend is reversed: at the disk edge, the fraction of coarse dust is larger than that in the solar neighborhood. This general Galactic trend seems to be explained by the influence of the spiral pattern: its processes sort the dust by size and fragment it so that coarse and fine dust tend to accumulate, respectively, at the outer and inner (relative to the Galactic center) edges of the spiral arms. As a result, fine dust may exist only in the part of the Galactic disk far from both the Galactic center and the edge, while coarse dust dominates at the Galactic center, at the disk edge, and outside the disk.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号