首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   0篇
地质学   1篇
天文学   48篇
  2018年   3篇
  2017年   3篇
  2016年   4篇
  2015年   2篇
  2014年   3篇
  2013年   6篇
  2012年   4篇
  2011年   5篇
  2010年   4篇
  2009年   3篇
  2008年   2篇
  2007年   3篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
排序方式: 共有49条查询结果,搜索用时 583 毫秒
1.
2.
We analyzed magnetic-field structures of three three-dipole magnetic stars HD 18078, HD 37776, and HD 149438. The fact that the model and observed phase dependences B e (Φ) and B s (Φ) for HD 18078 computed with the same parameters of the dipoles agree with each other shows conclusively that global magnetic structures are formed by dipole structures. Magnetic poles show up conspicuously on Mercator maps of the distribution of magnetic field, the field strength there is maximal and equal to B p = 3577, 10 700, and 275Gin the three stars mentioned above.Dipolemodelsmake it possible to analyze magnetic-field structure inside stars.  相似文献   
3.
The low rotation velocities of magnetic CP stars are discussed. Arguments against the involvement of the magnetic field in the loss of angular momentum are given: (1) the fields are not strong enough in young stars in the stage of evolution prior to the main sequence; (2) there is no significant statistical correlation between the magnetic field strength and the rotation period of CP stars; (3) stars with short periods have the highest fields; (4) a substantial number of stars with very low magnetic fields (B e < 500 G) have rotation speeds that are typical of other CP stars; (5) simulations of the magnetic fields by Leroy and the author show that the orientation of dipoles inside rotating stars, both slow and fast, is consistent with an arbitrary orientation of the dipoles; and, (6) slow rotators with P>25 days, which form 12% of the total, probably lie at the edge of the velocity distribution for low mass stars. All of these properties conflict with the hypothesis of magnetic braking of CP stars.  相似文献   
4.
We investigate the HD 182255, a star earlier suspected to be helium-weak. We show it to be a SiHe-w-type CP object. Our study revealed four regions with anomalous elemental abundances on the stellar surface near the equator of rotation. Its magnetic field could not be measured, apparently due to the unfavorable orientation of the star. The star is seen almost (rotation) pole on, the inclination of its rotation axis is i = 12°. The magnitude of HD 182255 varies as a result of its rotation owing to the nonuniform distribution of chemical elements on its surface, which leads to the variable blanketing effect. The helium and silicon abundances increase with depth, i.e., the stratification typical of CP stars is observed. The star undergoes nonradial pulsations and nonstationary variations of the structure of its upper atmosphere.  相似文献   
5.
This is a preliminary study of the star HD 35502. Its magnetic field has been measured in different phases of its period. Preliminary values of the magnetic field parameters have been obtained based on a central quadrupole model. The effective magnetic field Be varies over 0-5000 G, the average surface magnetic field ranges over 6300-6700 G, the field at the poles is Bp=7000 G, and the angle between the quadrupole axis and the axis of rotation is β = 80o. As a first approximation, the surface helium is concentrated around the (negative) pole and for τ > 1 its abundance is reduced by approximately 2-4 dex, which confirms the hypothesis of helium diffusion under the action of gravitation and wind in a stable atmosphere. The chemical elements Si and Cr are concentrated in four spots on the magnetic equator between the magnetic poles, or in a ring coincident with the magnetic equator; precisely which is not clear at present.  相似文献   
6.
The dependence of the degree of anomaly of parameter Z of Geneva photometry (Z0 = Z CP ?Z norm.) on the average surface magnetic field Bs is analyzed. The Z0 value is proportional to the degree of anomaly of chemical composition. It was found that Bs → 0 corresponds Z0 → ?0.010÷ ?0.015, i.e., part of CP stars are virtually devoid of magnetic field, but exhibit chemical anomalies. This effect may be due to selection whereby only objects with strong chemical anomalies are classified as CP stars, thereby producing a deficit of stars with relatively weak anomalies. Moreover, CP stars have other sources of stabilization of their atmospheres besides the magnetic field, e.g., slow rotation. Formulas relating Z0 to Bs are derived.  相似文献   
7.
Astronomy Letters - We studied the spectroscopic binary HD 116656 (ζ1 UMa) that has previously been suspected to be a Si-type chemically peculiar star. The magnetic field of each individual...  相似文献   
8.
Based on spectra taken with a 6-m telescope, we analyzed the abundances of chemical elements in the He-weak stars HD 21699 and HD 217833, estimated their surface magnetic fields (Bs = 4000 and 4500 G, respectively) from the magnetic intensification of spectral lines, and determined their microturbulences (V t = 0.80 and 0.75 km s−1, respectively). The low values of V t show that the stellar atmospheres are stabilized by a magnetic field, which explains the presence of diffusion processes that lead to chemical anomalies. Helium is strongly underabundant, and its deficiency is −1.50 and −1.81 dex in HD 21699 and HD 217833, respectively. We used model atmospheres to determine the effective temperatures, T eff = 16 000 and 15 450 K, and surface gravities, log g = 4.15 and 3.88, for the stars from the Hδ line, implying that they lie on the main sequence near the stars of luminosity class V.  相似文献   
9.
Surface helium and silicon distribution of a He-weak CP star HD21699 was examined using the spectra obtained at different phases of the star’s rotational period. The abundance of helium over the whole surface is weak, but in the magnetic polar regions it is strong, apparently due to the impact of stellar wind. Silicon accumulates in the region with a horizontal alignment of the magnetic lines, as follows from the theory. The abundance of helium and silicon increases with depth. Moreover, the boundary of the abundance variation is very sharp and its depth practically does not change with the rotational period phase. Accounting for the stratification of chemical elements considerably changes the deduced temperature distribution with depth as well as the form of the hydrogen line profile.  相似文献   
10.
The temperature distribution with depth in the atmosphere of the magnetic star HD21699 is modelled for each observed rotational phase using Hδ line profiles obtained with a signal to noise ratio S/N = 1000. The observed temperature distributions were averaged within and outside the region of the magnetic spots. It appears that these average temperatures are equal to within the limits of error. This shows that the magnetic field does not affect the physical condition of the matter in the star and does not disturb its thermodynamic state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号