首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
天文学   1篇
  2004年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
The gravitational instability in the dust layer of a protoplanetary disk with nonuniform dust density distributions in the direction vertical to the midplane is investigated. The linear analysis of the gravitational instability is performed. The following assumptions are used: (1) One fluid model is adopted, that is, difference of velocities between dust and gas are neglected. (2) The gas is incompressible. (3) Models are axisymmetric with respect to the rotation axis of the disk. Numerical results show that the critical density at the midplane is higher than the one for the uniform dust density distribution by Sekiya (1983, Prog. Theor. Phys. 69, 1116-1130). For the Gaussian dust density distribution, the critical density is 1.3 times higher, although we do not consider this dust density distribution to be realistic because of the shear instability in the dust layer. For the dust density distribution with a constant Richardson number, which is considered to be realized due to the shear instability, the critical density is 2.85 times higher and is independent of the value of the Richardson number. Further, if a constant Richardson number could decrease to the order of 0.001, the gravitational instability would be realized even for the dust to gas surface density ratio with the solar abundance. Our results give a new restriction on planetesimal formation by the gravitational instability.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号