首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
大气科学   1篇
地球物理   2篇
天文学   2篇
自然地理   1篇
  2020年   1篇
  2017年   1篇
  2009年   1篇
  2005年   1篇
  2001年   1篇
  1981年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
The Neuquén Group is an Upper Cretaceous continental sedimentary unit exhumed during the latest Miocene contractional phase occurred in the southern Central Andes, allowing a direct field observation and study of the depositional geometries. The identification of growth strata on these units surrounding the structures of the frontal parts of the Andes, sedimentological analyses and U–Pb dating of detrital components, allowed the definition of a synorogenic unit that coexisted with the uplift of the early Andean orogen since ca. 100 Ma, maximum age obtained in this work, compatible with previous assignments and constrained in the top by the deposition of the Malargüe Group, in the Maastrichtian (ca. 72 Ma). The definition of a wedge top area in this foreland basin system, where growth strata were described, permitted to identify a Late Cretaceous orogenic front and foredeep area, whose location and amplitude contrast with previous hypotheses. This wedge top area was mostly fed from the paleo‐Andes with small populations coming from sources in the cratonic area that are interpreted as a recycling in Jurassic and Lower Cretaceous sections, which contrasts with other analyses performed at the foredeep zone that have mixed sources. In particular, Permian sources are interpreted as coming directly from the cores of the basement structures, where Neopaleozoic sections are exposed, next to the synorogenic sedimentation, implying a strong incision in Late Cretaceous times with an exhumation structural level similar to the present. The maximum recognised advance for this Late Cretaceous deformation in the study area is approximately 500 km east of the Pacific trench, which constitutes an anomaly compared with neighbour segments where Late Cretaceous deformations were found considerably retracted. The geodynamic context of the sedimentation of this unit is interpreted as produced under the westward fast moving of South America, colliding with two consecutive mid‐ocean ridges during a period of important plate reorganisation. The subduction of young, anhydrous, buoyant lithosphere would have produced changes in the subduction geometry, reflected first by an arc waning/gap and subsequently by an arc migration that coexisted with synorogenic sedimentation. These magmatic and deformational processes would be the product of a shallow subduction regime, following previous proposals, which occurred in Late Cretaceous times, synchronous to the sedimentation of the Neuquén Group.  相似文献   
2.
Dispersion of particles, as evidenced by changes in their number distributions (PNDs) and concentrations (PNCs), in urban street canyons, is still not well understood. This study compares measurements by a fast-response particle spectrometer (DMS500) of the PNDs and the PNCs (5–1000 nm, sampled at 1 Hz) at street and rooftop levels in a Cambridge UK street canyon, and examines mixing, physical and chemical conversion processes, and the competing influences of traffic volume and rooftop wind speed on the PNDs and the PNCs in various size ranges. PNCs at street level were ≈6.5 times higher than at rooftop. Street-level PNCs followed the traffic volume and decreased with increasing wind speed, showing a larger influence of wind speed on 30–300 nm particles than on 5–30 nm particles. Conversely, rooftop PNCs in the 5–30 nm size range increased with wind speed, whereas those for particles between 30 and 300 nm did not vary with wind speed.  相似文献   
3.
Jordanova  V.K.  Thorne  R.M.  Farrugia  C.J.  Dotan  Y.  Fennell  J.F.  Thomsen  M.F.  Reeves  G.D.  McComas  D.J. 《Solar physics》2001,204(1-2):361-375
We study the development of the terrestrial ring current during the time interval of 13–18 July, 2000, which consisted of two small to moderate geomagnetic storms followed by a great storm with indices Dst=−300 nT and Kp=9. This period of intense geomagnetic activity was caused by three interplanetary coronal mass ejecta (ICME) each driving interplanetary shocks, the last shock being very strong and reaching Earth at ∼ 14 UT on 15 July. We note that (a) the sheath region behind the third shock was characterized by B z fluctuations of ∼35 nT peak-to-peak amplitude, and (b) the ICME contained a negative to positive B z variation extending for about 1 day, with a ∼ 6-hour long negative phase and a minimum B z of about −55 nT. Both of these interplanetary sources caused considerable geomagnetic activity (Kp=8 to 9) despite their disparity as interplanetary triggers. We used our global ring current-atmosphere interaction model with initial and boundary conditions inferred from measurements from the hot plasma instruments on the Polar spacecraft and the geosynchronous Los Alamos satellites, and simulated the time evolution of H+, O+, and He+ ring current ion distributions. We found that the O+ content of the ring current increased after each shock and reached maximum values of ∼ 60% near minimum Dst of the great storm. We calculated the growth rate of electromagnetic ion cyclotron waves considering for the first time wave excitation at frequencies below O+ gyrofrequency. We found that the wave gain of O+ band waves is greater and is located at larger L shells than that of the He+ band waves during this storm interval. Isotropic pitch angle distributions indicating strong plasma wave scattering were observed by the imaging proton sensor (IPS) on Polar at the locations of maximum predicted wave gain, in good agreement with model simulations.  相似文献   
4.
The launch of the P78-2 (SCATHA) satellite in January 1979 has provided a new opportunity to study the energetic ion composition in the high altitude equatorial regions of the earth's magnetosphere. In particular detailed pitch angle distributions were obtained as a function of ion species and energy. The energies measured range from ~ 90 to 250 keV/nucleon for Z ? 2. Data are presented which were acquired in late March and early April 1979. The relative abundance of He and CNO nuclei are found to be ~ 10?2 and 5 × 10?4 respectively at L ? 5.5. Only an upper limit on the relative abundance of Fe group nuclei of < 3 × 10?7 was obtained. The angular distributions of the heavy ions was found to be very steep for BB0 < 1.5 and then to flatten markedly.  相似文献   
5.
Climate change, combined with industrial growth and increasing demand, could result in serious future water shortages and related water quality and temperature issues, especially for upland and humid areas. The extreme 2018 drought that prevailed throughout Europe provided an opportunity to investigate conditions likely to become more frequent in the future. For an upland rural catchment utilised by the distilling industry in North-East Scotland, a tracer-based survey combined discharge, electrical conductivity, stable water isotopes and temperature measurements to understand the impacts of drought on dominant stream water and industry water sources, both in terms of water quantity and quality (temperature). Results showed that water types (groundwater, ephemeral stream water, perennial stream water and water from small dams) were spatially distinct and varied more in space than time. With regards to the drought conditions we found that streams were largely maintained by groundwater during low flows. This also buffered stream water temperatures. Water types with high young water fractions were less resilient, resulting in streams with an ephemeral nature. Although our results demonstrated the importance of groundwater for drought resilience, water balance data revealed these storage reserves were being depleted and only recovered towards the end of the following year because of above average rainfall in 2019. Increased storage depletion under continued trends of extreme drought and water abstraction could be addressed via informed (nature based) management strategies which focus on increasing recharge. This may improve resilience to droughts as well as floods, but site specific testing and modelling are required to understand their potential. Results could have implications for management of water volumes and temperature, particularly for the sustainability of an historic industry, balancing requirements of rural communities and the environment.  相似文献   
6.
Energetic electrons (e.g., 50 keV) travel along field lines with a high speed of around 20 REs−1. These swift electrons trace out field lines in the magnetosphere in a rather short time, and therefore can provide nearly instantaneous information about the changes in the field configuration in regions of geospace. The energetic electrons in the high latitude boundary regions (including the cusp) have been examined in detail by using Cluster/RAPID data for four consecutive high latitude/cusp crossings between 16 March and 19 March 2001. Energetic electrons with high and stable fluxes were observed in the time interval when the IMF had a predominately positive Bz component. These electrons appeared to be associated with a lower plasma density exhibiting no obvious tailward plasma flow (<20 keV). On the other hand, no electrons or only spike-like electron events have been observed in the cusp region during southward IMF. At that time, the plasma density was as high as that in the magnetosheath and was associated with a clear tailward flow. The fact that no stable energetic electron fluxes were observed during southward IMF indicates that the cusp has an open field line geometry. The observations indicate that both the South and North high latitude magnetospheric boundary regions (including both North and South cusp) can be energetic particle trapping regions. The energetic electron observations provide new ways to investigate the dynamic cusp processes. Finally, trajectory tracing of test particles has been performed using the Tsyganenko 96 model; this demonstrates that energetic particles (both ions and electrons) may be indeed trapped in the high latitude magnetosphere.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号