首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   3篇
地球物理   6篇
天文学   9篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2007年   4篇
  2006年   1篇
  2005年   4篇
  2003年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
磁尾爆发性整体流与亚暴的关系   总被引:2,自引:2,他引:0       下载免费PDF全文
利用星簇Cluster的三颗卫星(C1, C3和C4)在2001年和2002年的数据,研究磁尾爆发性整体流(BBF, Bursty Bulk Flow)事件及其与亚暴的关系. 三颗卫星可以同时观测到同一次BBF事件, 有时只有一颗或两颗观测到BBF,其原因有:(1)等离子体整体流的速度峰值满足BBF选取原则中的峰值要求, 但卫星的运行轨道不满足;(2)卫星处于所要求的区域内,等离子体整体流的速度峰值不满足;(3)中性片的复杂结构及其运动使得选取条件不能同时满足;(4)BBF空间分布高度局域化. 统计研究结果表明:单颗卫星观测存在局限性, C1、C3和C4卫星独立观测到BBF的持续总时间分别占它们联合观测到的5507%、7748%和5552%; 大部分亚暴爆发期间都能观测到BBF, 甚至在一次亚暴爆发期间观测到多次BBF; 少数亚暴爆发期间没有观测到BBF.  相似文献   
2.
The twin STEREO spacecraft provide a unique tool to study the temporal evolution of the solar-wind properties in the ecliptic since their longitudinal separation increases with time. We derive the characteristic temporal variations at ~?1 AU between two different plasma parcels ejected from the same solar source by excluding the spatial variations from our datasets. As part of the onboard IMPACT instrument suite, the SWEA electron experiment provides the solar-wind electron core density at two different heliospheric vantage points. We analyze these density datasets between March and August 2007 and find typical solar minimum conditions. After adjusting for the theoretical time lag between the two spacecraft, we compare the two density datasets. We find that their correlation decreases as the time difference increases between two ejections. The correlation coefficient is about 0.80 for a time lag of a half day and 0.65 for two days. These correlation coefficients from the electron core density are somewhat lower than the ones from the proton bulk velocity obtained in an earlier study, though they are still high enough to consider the solar wind as persistent after two days. These quantitative results reflect the variability of the solar-wind properties in space and time, and they might serve as input for solar-wind models.  相似文献   
3.
The DynaMICCS mission is designed to probe and understand the dynamics of crucial regions of the Sun that determine solar variability, including the previously unexplored inner core, the radiative/convective zone interface layers, the photosphere/chromosphere layers and the low corona. The mission delivers data and knowledge that no other known mission provides for understanding space weather and space climate and for advancing stellar physics (internal dynamics) and fundamental physics (neutrino properties, atomic physics, gravitational moments...). The science objectives are achieved using Doppler and magnetic measurements of the solar surface, helioseismic and coronographic measurements, solar irradiance at different wavelengths and in-situ measurements of plasma/energetic particles/magnetic fields. The DynaMICCS payload uses an original concept studied by Thalès Alenia Space in the framework of the CNES call for formation flying missions: an external occultation of the solar light is obtained by putting an occulter spacecraft 150 m (or more) in front of a second spacecraft. The occulter spacecraft, a LEO platform of the mini sat class, e.g. PROTEUS, type carries the helioseismic and irradiance instruments and the formation flying technologies. The latter spacecraft of the same type carries a visible and infrared coronagraph for a unique observation of the solar corona and instrumentation for the study of the solar wind and imagers. This mission must guarantee long (one 11-year solar cycle) and continuous observations (duty cycle > 94%) of signals that can be very weak (the gravity mode detection supposes the measurement of velocity smaller than 1 mm/s). This assumes no interruption in observation and very stable thermal conditions. The preferred orbit therefore is the L1 orbit, which fits these requirements very well and is also an attractive environment for the spacecraft due to its low radiation and low perturbation (solar pressure) environment. This mission is secured by instrumental R and D activities during the present and coming years. Some prototypes of different instruments are already built (GOLFNG, SDM) and the performances will be checked before launch on the ground or in space through planned missions of CNES and PROBA ESA missions (PICARD, LYRA, maybe ASPIICS).  相似文献   
4.
Lavraud  B.  Gosling  J. T.  Rouillard  A. P.  Fedorov  A.  Opitz  A.  Sauvaud  J.-A.  Foullon  C.  Dandouras  I.  Génot  V.  Jacquey  C.  Louarn  P.  Mazelle  C.  Penou  E.  Phan  T. D.  Larson  D. E.  Luhmann  J. G.  Schroeder  P.  Skoug  R. M.  Steinberg  J. T.  Russell  C. T. 《Solar physics》2009,256(1-2):379-392

We analyze Wind, ACE, and STEREO (ST-A and ST-B) plasma and magnetic field data in the vicinity of the heliospheric current sheet (HCS) crossed by all spacecraft between 22:15 UT on 31 March and 01:25 UT on 1 April 2007 corresponding to its observation at ST-A and ST-B, which were separated by over 1800 R E (or over 1200 R E across the Sun?–?Earth line). Although only Wind and ACE provided good ion flow data in accord with a solar wind magnetic reconnection exhaust at the HCS, the magnetic field bifurcation typical of such exhausts was clearly observed at all spacecraft. They also all observed unambiguous strahl mixing within the exhaust, consistent with the sunward flow deflection observed at Wind and ACE and thus with the formation of closed magnetic field lines within the exhaust with both ends attached to the Sun. The strong dawnward flow deflection in the exhaust is consistent with the exhaust and X-line orientations obtained from minimum variance analysis at each spacecraft so that the X-line is almost along the GSE Z-axis and duskward of all the spacecraft. The observation of strahl mixing in extended and intermittent layers outside the exhaust by ST-A and ST-B is consistent with the formation of electron separatrix layers surrounding the exhaust. This event also provides further evidence that balanced parallel and antiparallel suprathermal electron fluxes are not a necessary condition for identification of closed field lines in the solar wind. In the present case the origin of the imbalance simply is the mixing of strahls of substantially different strengths from a different solar source each side of the HCS. The inferred exhaust orientations and distances of each spacecraft relative to the X-line show that the exhaust was likely nonplanar, following the Parker spiral orientation. Finally, the separatrix layers and exhausts properties at each spacecraft suggest that the magnetic reconnection X-line location and/or reconnection rate were variable in both space and time at such large scales.

  相似文献   
5.
6.
本文利用星簇Cluster的三颗卫星(C1,C3和C4)在2001年和2002年的数据,研究了快速对流事件(RCE, Rapid Convection Event)及其与亚暴的关系.结果显示单点卫星对RCE的观测,不能反映磁尾RCE的真实情况.在2002年7月25日发生的一次RCE事件, C1和C3观测到这次RCE,C4却没有观测到.在三颗卫星联合观测到的306次RCE中,C1观测到215次,C3观测到266次,C4观测到227次.统计研究表明,单点卫星观测到的RCE的平均时间也不能准确反映磁层内的RCE.由此推论在整个中心等离子体片内,快速对流事件所承担的能量和磁通量的输运量,可能远大于单点卫星观测给出的结果.用速度来定义的磁尾爆发性整体流(BBF,Bursty Bulk Flow)与亚暴的关系,比用磁通量定义的RCE与亚暴的关系要更加紧密.  相似文献   
7.
We report observations of Titan's high-altitude exosphere detected out to about 50,000 km altitude. The observations were made by the Ion Neutral Camera (INCA) on board the Cassini spacecraft. INCA detects energetic neutral atoms (ENA) that are formed when the ambient magnetospheric ions charge exchange with Titan's neutral atmosphere and exosphere. We find that Titan's exospheric H2 distribution follows closely a full Chamberlain distribution including ballistic, escaping and satellite distributions. As expected, neutral densities are dominated by a satellite distribution above about 10,000 km. The maximum detectable extent of the exosphere (~50,000 km) coincides with the radius of the Hill sphere of gravitational influence from Saturn. While we find no direct indications of a neutral Titan torus with densities greater than about 1000 cm?3, we observe interesting asymmetries in the distribution that warrants further investigation. Based on these findings we compute the average precipitating ENA flux to be about 5×106 keV/(cm2 s), or 8×10?3 erg/(cm2 s), which is directly comparable to that of precipitating energetic ions (Sittler, et al., 2009) and slightly higher than that of solar EUV (Tobiska, 2004). Thus, the energy deposited by precipitating ENAs must also be taken into consideration when studying the energy balance of Titan's thermosphere.  相似文献   
8.
磁宁静期磁尾爆发性整体流持续时间多点卫星研究   总被引:6,自引:6,他引:0       下载免费PDF全文
本文利用星簇CLUSTER的三颗卫星数据分析了磁宁静期磁尾爆发性整体流(BBFs, Bursty Bulk Flows)的时间尺度, 并与单个卫星的结果做了比较. 事例研究表明, 利用三颗卫星观测数据判断的BBFs的时间尺度比单个卫星的大一倍左右. 对于三颗卫星观测到的同一个BBFs, BBFs在晨昏方向上的摆动决定了CLUSTER的三个卫星观测到BBFs的先后次序. 三颗卫星的观测也显示了BBFs的高度局域化特征. 磁宁静期磁尾BBFs寿命的增大, 使得BBFs携带的质量和能量的地向输运增加. 这种地向输运增加的结果是: 磁尾储存的能量得到较为平稳的释放, 改变了亚暴起始产生的时间, 为解决磁层压力平衡矛盾(PBI, Pressure Balance Inconsistency)问题提供了新的思路.  相似文献   
9.
We present a study of the magnetospheric cusp response to extreme external parameters during passage of the ICME over the Earth on 10 November 2004, based on Cluster observations of the plasma properties inside the low-latitude boundary layer (LLBL)/cusp regions. Two separate events are observed while Cluster is in the dawn sector, 07 – 08 h magnetic local time (MLT). First, a LLBL/cusp crossing occurs during a period of strong southward IMF. During this time, the LLBL/cusp is very small, ∼0.8 – 1° invariant latitude (ILAT) and moves equatorward, down to 67° ILAT. This can be explained by the occurrence of significant magnetopause erosion due to enhanced dayside sub-solar reconnection. The energy of the plasma inside this region is higher than normal, and the low-energy cut-off often observed in the ion data is also unusually high. This might be explained by the suggestion that the local magnetosheath Alfvén velocity and deHoffmann – Teller velocity are also both extremely high. However, the plasma convection and parallel velocity inside this region are not very high. The second event discussed in this paper is a LLBL/cusp crossing during strong equatorial IMF (mostly due to the dominant dawn – dusk component). Under these conditions, occurring at the same time as pulses of solar wind dynamic pressure, the observations are very complicated. However, we suggest that in the polar region of the southern hemisphere, Cluster cross two LLBLs/cusps, spatially separated by polar cap plasma. The first LLBL/cusp is formed by anti-parallel reconnection in the dusk sector of the southern hemisphere and the second is formed by anti-parallel reconnection in the dawn sector of the northern hemisphere. The second LLBL/cusp is located at extremely low latitude, less than ∼66.3° ILAT. During all LLBL/cusp crossings, strong ionospheric O+ ion outflow is detected in the form of a narrow beam with limited pitch-angle range.  相似文献   
10.
Cluster Observations of the CUSP: Magnetic Structure and Dynamics   总被引:1,自引:0,他引:1  
This paper reviews Cluster observations of the high altitude and exterior (outer) cusp, and adjacent regions in terms of new multi-spacecraft analysis and the geometry of the surrounding boundary layers. Several crossings are described in terms of the regions sampled, the boundary dynamics and the electric current signatures observed. A companion paper in this issue focuses on the detailed plasma distributions of the boundary layers. The polar Cluster orbits take the four spacecraft in a changing formation out of the magnetosphere, on the northern leg, and into the magnetosphere, on the southern leg, of the orbits. During February to April the orbits are centred on a few hours of local noon and, on the northern leg, generally pass consecutively through the northern lobe and the cusp at mid- to high-altitudes. Depending upon conditions, the spacecraft often sample the outer cusp region, near the magnetopause, and the dayside and tail boundary layer regions adjacent to the central cusp. On the southern, inbound leg the sequence is reversed. Cluster has therefore sampled the boundaries around the high altitude cusp and nearby magnetopause under a variety of conditions. The instruments onboard provide unprecedented resolution of the plasma and field properties of the region, and the simultaneous, four-spacecraft coverage achieved by Cluster is unique. The spacecraft array forms a nearly regular tetrahedral configuration in the cusp and already the mission has covered this region on multiple spatial scales (100–2000 km). This multi-spacecraft coverage allows spatial and temporal features to be distinguished to a large degree and, in particular, enables the macroscopic properties of the boundary layers to be identified: the orientation, motion and thickness, and the associated current layers. We review the results of this analysis for a number of selected crossings from both the North and South cusp regions. Several key results have been found or have confirmed earlier work: (1) evidence for magnetically defined boundaries at both the outer cusp/magnetosheath interface and the␣inner cusp/lobe or cusp/dayside magnetosphere interface, as would support the existence of a distinct exterior cusp region; (2) evidence for an associated indentation region on the magnetopause across the outer cusp; (3) well defined plasma boundaries at the edges of the mid- to high-altitude cusp “throat”, and well defined magnetic boundaries in the high-altitude “throat”, consistent with a funnel geometry; (4) direct control of the cusp position, and its extent, by the IMF, both in the dawn/dusk and North/South directions. The exterior cusp, in particular, is highly dependent on the external conditions prevailing. The magnetic field geometry is sometimes complex, but often the current layer has a well defined thickness ranging from a few hundred (for the inner cusp boundaries) to 1000 km. Motion of the inner cusp boundaries can occur at speeds up to 60 km/s, but typically 10–20 km/s. These speeds appear to represent global motion of the cusp in some cases, but also could arise from expansion or narrowing in others. The mid- to high-altitude cusp usually contains enhanced ULF wave activity, and the exterior cusp usually is associated with a substantial reduction in field magnitude.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号