首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
地球物理   17篇
地质学   2篇
天文学   6篇
自然地理   3篇
  2015年   2篇
  2013年   2篇
  2012年   4篇
  2009年   3篇
  2006年   1篇
  2005年   2篇
  2003年   2篇
  2001年   1篇
  1996年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
排序方式: 共有28条查询结果,搜索用时 31 毫秒
1.
The numerical model of convection in magma sills is developed. The model is based on a full system of equations of fluid dynamics and includes heat transfer, buoyancy effects and diffusion of some minor component (marker). Solidification is treated as a phase transition. The results indicate that there are some qualitative differences between very thin sills with Rayleigh number Ra = 105 and thin sills with Ra = 106. For a basaltic magma the first case corresponds to the thickness of the sills of approximately 30 cm and the second case corresponds to the thickness of 60 cm. In the first case mixing is inefficient and conduction is the dominant form of heat transfer. In the second case mixing is efficient and convection is the dominant form of heat transfer. Some of the results can be scaled for the more viscous magmas in thicker sills.  相似文献   
2.
Titan is the only body, other than the Earth where liquid is present on the surface. In the present work we consider behavior of methane in the pores of Titan's regolith. Using numerical model we investigate quantitative conditions necessary for the onset of convection. We have found that the methane convection in Titan's regolith is possible. It can be expected in regions where the regolith has sufficiently high porosity, independently of the geothermal heat flux.  相似文献   
3.
Meyer-Vernet  N.  Maksimovic  M.  Czechowski  A.  Mann  I.  Zouganelis  I.  Goetz  K.  Kaiser  M. L.  St. Cyr  O. C.  Bougeret  J.-L.  Bale  S. D. 《Solar physics》2009,256(1-2):463-474
Solar Physics - The STEREO wave instrument (S/WAVES) has detected a very large number of intense voltage pulses. We suggest that these events are produced by impact ionisation of nanoparticles...  相似文献   
4.
Thermal history of Rhea from the beginning of accretion is investigated. We developed a numerical model of convection combined with the parameterized theory. Large scale melting of the satellite’s matter and gravitational differentiation of silicates from ices are included. The results are confronted with observational data from Cassini spacecraft that indicate minor differentiation of the satellite’s interior. We suggest that partial differentiation of the satellite’s interior is accompanied (or followed) by the process of light fraction uprising to the surface. The calculation indicates that the partial differentiation of the matter of the satellite’s interior is possible only for narrow range of parameters. In particular, we found that the time from the formation of CAI (calciumaluminum rich inclusions in chondrites) to the end of accretion of Rhea is in the range of 3–4 My.  相似文献   
5.
6.
A parameterized theory of convection is developed for 6 medium-size icy satellites (MIS) of Saturn. It is an extension of the research concerning the Mimas-Enceladus paradox. Two parameterizations of dimensionless temperature are used in the model and a new constrain for tidal heating is included. It is found that the basic results of the model are independent of particulars of the parameterizations. The new constrain considerably reduces the space of possible values of the material parameter of satellites but the two basic conclusions are unchanged, i.e.: (a) the thermal state of the considered MIS can be explained in the frame of the uniform model that includes radiogenic and tidal heating; (b) the theory indicates that endogenic activity of some MIS was (or is) a result of a specific ‘excited’, high temperature state of a given satellite. The theory could be also used for estimation of tidal heating.  相似文献   
7.
Convection is one of the most important processes responsible for the formation of the surface features on many planetary bodies. Observations of some icy satellites indicate that the satellites’ surfaces are modified due to the internally driven tectonic activity. The tidal heating could be an important source of energy responsible for such internal activity. This suggestion is supported by the correlation of the tidal parameter ψ and tectonic features. Consequently, the tidal and the radiogenic heat sources seem to be of primary importance for the medium size icy satellites. Our research deals with convection in a non-differentiated body. The convection is a results of both uniform radiogenic heating and non-uniform and non-spherically symmetric tidal heating. To investigate the problem a 3D model of convection is developed based on the Navier-Stokes equation, the equation of thermal conductivity, the equation of continuity, and the equation of state. The 3D formulae for the tidal heat generation based on the results of Peale and Cassen [1978. Icarus 36, 245-269] and others are used in the model. To measure the relative importance of radiogenic heating versus tidal heating a dimensionless number Ct is introduced. The systematic investigation of a steady-state convection is performed for different values of the Rayleigh number and for the full range of Ct. The results indicate that for low and moderate value of the Rayleigh number, convection pattern driven by the tidal heating and by the radioactivity in the medium size icy satellites consists of one cell or of two cells. For Ct>0 the critical value of Rayleigh number Racr=0. The one-cell pattern is specific for low Rayleigh numbers but it could be observed for the full range of number Ct. It means that the pattern of convection does not fully follow the pattern of heating. This rather unexpected result could be of great importance for the final stage of convection. All patterns of tidally driven convection are oriented with respect to the direction to the planet. For two-cell patterns the regions of downward motion are situated in the centers of the near and far sides of the satellite, respectively.  相似文献   
8.
The crustal section beneath amphibolite Nied?wied? Massif (Fore-Sudetic Block in NE Bohemian Massif), modelled on the basis of geological and seismic data, is dominated by gneisses with subordinate granites (upper and middle crust) and melagabbros (lower crust). The geotherm was calculated based on the chemical analyses of the heat-producing elements in the rocks forming the crust and the measurements of their density and heat conductivity. The results were verified by heat flow calculations based on temperature measurements from 1,600?m deep well in the Nied?wied? Massif and by temperature–depth estimates in mantle xenoliths coming from the nearby ca. 4.5?My basanite plug in Lutynia. The paleoclimate-corrected heat flow in the Nied?wied? Massif is 69.5?mW?m?2, and the mantle heat flow is 28?mW?m?2. The mantle beneath the Massif was located marginally relative to the areas of intense Cenozoic thermal rejuvenation connected with alkaline volcanism. This results in geotherm which is representative for lithosphere parts located at the margins of zones of continental alkaline volcanism and at its waning stages. The lithosphere–asthenosphere boundary (LAB) beneath Nied?wied? is located between 90 and 100?km depth and supposedly the rheological change at LAB is not related to the appearance of melt.  相似文献   
9.
Thermal history of Mimas and Enceladus is investigated from the beginning of accretion to 400 Myr. The numerical model of convection combined with the parameterized theory is used. The following heat sources are included: short lived and long lived radioactive isotopes, accretion, serpentinization, and phase changes. The heat transfer processes are: conduction, solid state convection, and liquid state convection. We find that temperature of Mimas’ interior was significantly lower than that of Enceladus. If Mimas accreted 1.8 Myr after CAI then the internal melting and differentiation did not occur at all. Comparison of thermal models of Mimas and Enceladus indicates that conditions favorable for the start of tidal heating lasted for a short time (~107 yr) in Mimas and for ~108 yr in Enceladus. This could explain the Mimas—Enceladus paradox. In fact, in view of the chronology based on cometary impact rate, one cannot discard a possibility that also Mimas was for some time active and it has the interior differentiated on porous core and icy mantle.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号