首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   2篇
  国内免费   1篇
测绘学   10篇
大气科学   11篇
地球物理   40篇
地质学   23篇
海洋学   8篇
天文学   3篇
综合类   2篇
自然地理   11篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   6篇
  2015年   1篇
  2014年   3篇
  2013年   7篇
  2012年   6篇
  2011年   5篇
  2010年   3篇
  2009年   7篇
  2008年   9篇
  2007年   5篇
  2006年   2篇
  2005年   4篇
  2004年   1篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1976年   1篇
  1973年   1篇
  1971年   1篇
  1890年   1篇
排序方式: 共有108条查询结果,搜索用时 15 毫秒
1.
2.
陆面过程模式是气候模式和天气模式的核心组成部分之一.在土壤-植被-大气耦合模式(Soil-Plant-Atmosphere Model, SPAM)的基础上,发展了新一代北京大学陆面过程模式PKULM(Peking University Land Model).本文首先介绍了PKULM的辐射传输、湍流输送、光合作用、土壤水热输送等过程的参数化方案;采用隐式迭代计算框架,发展并应用了一个快速的线性方程组求解算法,提高了模式计算稳定性;提出并使用了二分搜索算法计算气孔阻抗,避免了CLM(Community Land Model)等使用的迭代方法在干旱区不稳定的情况,提高了模式的适用性;采用水势为基础的土壤水分扩散方程,使模式能够模拟土壤饱和区的水分输送过程,为进一步与水文过程模式耦合奠定了基础;还发展了一个地表积水与径流过程的机理模型,提高了模式对地表水分平衡过程的模拟能力;最后,使用"中国西北干旱区陆-气相互作用观测试验"平凉站的资料对模式进行了检验并与NOAH(National Center for Environmental Prediction, Oregon State University, Air Force, and Hydrology Lab model)陆面过程模式的模拟结果进行了比较,结果表明PKULM能够较好地模拟西北半干旱区农田下垫面地气交换过程.  相似文献   
3.
The non-hydrostatic geoid is dominated by three large anomalies: an area of high gravity potential in the equatorial Pacific; another stretching from Greenland through Africa to the southwest Indian Ocean; and a semi-continuous low region passing from Hudson's Bay through Siberia to India and on to Antarctica. None of these three high-amplitude (greater than 60 m) and long-wavelength anomalies corresponds to present-day plate boundaries. However, if the modern geoid is plotted over the positions of continents and plate boundaries at 125 Ma B.P. (reconstructed relative to hotspots) a strong correlation emerges. The modern geoidal low corresponds in position to the areas of subduction surrounding the Pacific 125 Ma ago. The geoidal high now centered on Africa is entirely contained within ancient Pangaea, and the equatorial Pacific high overlies the location of the spreading centers preserved in the magnetic anomalies of the central Pacific. The most plausible cause of the large geoidal undulations is lower mantle convection only weakly coupled to plate motions. The correspondence between modern geoid and ancient plate boundaries implies either that the coupling was much more intimate in the past, or that there is a lag of at least 100 Ma in response of the lower mantle to upper mantle conditions.  相似文献   
4.
Fluxes of CO2, water vapor and sensible heat were measured in a grassland ecosystem near Manhattan, Kansas, employing the eddy correlation technique. The vegetation at this site is dominated by big bluestem (Andropogon gerardii), switchgrass (Panicum virgatum), and indiangrass (Sorghastrum nutans). Diurnal patterns of the energy budget components and CO2 fluxes are evaluated on a few selected days. Influence of high atmospheric evaporative demand and low availability of soil water are examined on (a) energy partitioning, and (b) the magnitudes and patterns of atmospheric carbon dioxide exchange.Published as Paper No. 8470, Journal Series, Nebraska Agricultural Research Division.  相似文献   
5.
We present the results of a palaeomagnetic study of four mid-Cretaceous limestone sections exposed in northeastern Mexico. The limestones are weakly magnetized and exhibit two- to three-component magnetizations. These magnetization components appear to be carried by both a sulphide mineral and a magnetite-titanomagnetite mineral. The sulphide mineral carries a reverse polarity overprint that often makes it difficult to isolate definitively the higher-unblocking-temperature component. The high-unblocking-temperature component is well defined in the upper portion of the Santa Rosa Canyon section and in the Cienega del Toro section and passes the fold test. The characteristic remanent magnetization (ChRM) inclinations agree well with predicted mid-Cretaceous inclinations for these sites, although the declinations differ by more than 100°. The relative rotation between these two sites probably occurred as the thrust sheets were emplaced during Laramide deformation. At two of the sections, namely Cienega del Toro and the overturned Los Chorros sections, only normal polarity directions are observed. The La Boca Canyon and Santa Rosa Canyon sections exhibit zones of both normal and reverse polarity magnetization. Correlation of these polarity zones with the geomagnetic polarity timescale provides a time framework for lithostratigraphic and palaeoceanographic studies of these sections.  相似文献   
6.
Groundwater in front of warm‐based glaciers is likely to become a more integrated part of the future proglacial hydrological system at high latitudes due to global warming. Here, we present the first monitoring results of shallow groundwater chemistry and geochemical fingerprinting of glacier meltwater in front of a warm‐based glacier in Southeast Greenland (Mittivakkat Gletscher, 65° 41′ N, 37° 48′ W). The groundwater temperature, electrical conductivity and pressure head were monitored from August 2009 to August 2011, and water samples were collected in 2009 and analyzed for major ions and water isotopes (δD, δ18O). The 2 yrs of monitoring revealed that major outbursts of glacier water during the ablation season flushed the proglacial aquifer and determined the groundwater quality for the next 2–8 weeks until stable chemical conditions were reached again. Water isotope composition shows that isotopic fractionation occurs in both groundwater and glacier meltwater, but fractionation due to evaporation from near‐surface soil moisture prior to infiltration has the most significant effect. This study shows that groundwater in Low Arctic Greenland is likely to possess a combined geochemical and isotopic composition, which is distinguishable from other water sources in the proglacial environment. However, the shallow groundwater composition at a given time is highly dependent on major outbursts of glacier water in the previous months.  相似文献   
7.
A conceptual model of anisotropic and dynamic permeability is developed from hydrogeologic and hydromechanical characterization of a foliated, complexly fractured, crystalline rock aquifer at Gates Pond, Berlin, Massachusetts. Methods of investigation include aquifer‐pumping tests, long‐term hydrologic monitoring, fracture characterization, downhole heat‐pulse flow meter measurements, in situ extensometer testing, and earth tide analysis. A static conceptual model is developed from observations of depth‐dependent and anisotropic permeability that effectively compartmentalizes the aquifer as a function of foliation intensity. Superimposed on the static model is dynamic permeability as a function of hydraulic head in which transient bulk aquifer transmissivity is proportional to changes in hydraulic head due to hydromechanical coupling. The dynamic permeability concept is built on observations that fracture aperture changes as a function of hydraulic head, as measured during in situ extensometer testing of individual fractures, and observed changes in bulk aquifer transmissivity as determined from earth tides during seasonal changes in hydraulic head, with higher transmissivity during periods of high hydraulic head, and lower transmissivity during periods of relatively lower hydraulic head. A final conceptual model is presented that captures both the static and dynamic properties of the aquifer. The workflow presented here demonstrates development of a conceptual framework for building numerical models of complexly fractured, foliated, crystalline rock aquifers that includes both a static model to describe the spatial distribution of permeability as a function of fracture type and foliation intensity and a dynamic model that describes how hydromechanical coupling impacts permeability magnitude as a function of hydraulic head fluctuation. This model captures important geologic controls on permeability magnitude, anisotropy, and transience and therefor offers potentially more reliable history matching and forecasts of different water management strategies, such as resource evaluation, well placement, permeability prediction, and evaluating remediation strategies.  相似文献   
8.
9.
10.
A pilot study to measure methane flux using eddy correlation sensors was conducted in a peatland ecosystem in north central Minnesota. A prototype tunable diode laser spectrometer system was employed to measure the fluctuations in methane concentration.The logarithmic cospectrum of methane concentration and vertical wind velocity fluctuations under moderately unstable conditions had a peak nearf = 0.10 (wheref is the nondimensional frequency) and was quite similar to the cospectra of water vapor and sensible heat. Daytime methane flux during the first two weeks of August ranged from 120 to 270 mg m-2 day-1. The temporal variation in methane fluxes was consistent with changes in peat temperature and water table elevation. Our results compared well with the range of values obtained in previous studies in Minnesota peatlands.These field observations demonstrate the utility of the micrometeorological eddy correlation technique for measuring surface fluxes of methane. The current state-of-the-art in tunable diode laser spectroscopy makes this approach practical for use in key ecosystems.Published as Paper No. 9556, Journal Series, Nebraska Agricultural Research Division.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号