首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
地球物理   2篇
地质学   7篇
天文学   2篇
自然地理   1篇
  2018年   1篇
  2016年   1篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2004年   2篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
2.
The main aim of the study was to develop a multimetric assessment system for macroinvertebrate communities of small and mid-sized streams in Germany in accordance with the Water Framework Directive of the European Union. The system should be applicable by water authorities, capable of distinguishing between different impacts, and specifically adapted to all types of small and mid-sized rivers in Germany. An assessment system has been developed consisting of two modules based on the established indices for saprobic degradation and acidity, and a third module covering general degradation. For the third module a new multimetric index (MMI) was developed and tested using preclassifications for stream hydromorphological degradation, land use and general impairment as impact measures. More information on sampling method, season and the type of dominating human impairment allowed to further analyse the index' capabilities and sensitivity. It performed well in all seasons and detected all types of impairment except acidity. The usefulness of the impact measures used in this study is discussed with regard to the development of a multimetric index. The comparison of the new index with other indices showed that it is especially sensitive in detecting macroinvertebrate community responses to hydromorphological degradation and pollution such as the German AQEM index, while IBI 12 and Renkonen's similarity more reflect general community shifts caused by any type of disturbance. The new assessment system will be proposed for future use by state agencies for nationwide monitoring in the context of the Water Framework Directive implementation.  相似文献   
3.
Developmental biology has become a major issue for understanding the evolution of Arthropoda. While usually only the ontogenies of extant species are studied, developmental information of fossil arthropods may exhibit developmental patterns not present in living ones. Crustacea possess, basically, a more gradual development than, for example, pterygote insects and would, therefore, be appropriate candidates for the study of fossil ontogenies. Remarkably, famous fossil deposits like the Devonian Rhynie Chert or the Early Palaeozoic ‘Orsten’-type deposits do not comprise the generally macroscopic malacostracan Crustacea (although most probably adult malacostracan fossils have already been found in the Cambrian). By contrast, the Late Jurassic Solnhofen Lithographic Limestones of southern Germany provide thousands of specimens (although only few morphotypes) that can be identified as malacostracan larvae, together with juvenile specimens differing in certain morphological aspects from their conspecific adults. More recent investigations with up-to-date imaging methodology on additional malacostracan crustacean larvae yielded also reconstructible developmental sequences of species from the Solnhofen deposits. The very similar fossil deposits of the Cretaceous lithographic limestones of Lebanon have also yielded malacostracan larvae and juvenile specimens. We present a summary of the occurrences of crustacean fossils providing developmental information and a demonstration of the potential of the lithographic limestones in this context. The importance of developmental data for understanding crustacean evolution is also highlighted.  相似文献   
4.
Scientific visualization is an integral part of the modeling workflow, enabling researchers to understand complex or large data sets and simulation results. A high-resolution stereoscopic virtual reality (VR) environment further enhances the possibilities of visualization. Such an environment also allows collaboration in work groups including people of different backgrounds and to present results of research projects to stakeholders or the public. The requirements for the computing equipment driving the VR environment demand specialized software applications which can be run in a parallel fashion on a set of interconnected machines. Another challenge is to devise a useful data workflow from source data sets onto the display system. Therefore, we develop software applications like the OpenGeoSys Data Explorer, custom data conversion tools for established visualization packages such as ParaView and Visualization Toolkit as well as presentation and interaction techniques for 3D applications like Unity. We demonstrate our workflow by presenting visualization results for case studies from a broad range of applications. An outlook on how visualization techniques can be deeply integrated into the simulation process is given and future technical improvements such as a simplified hardware setup are outlined.  相似文献   
5.
In the future, climate change will strongly influence our environment and living conditions. Weather and Climate simulations that predict possible changes produce big data sets. The combination of various variables of climate models with spatial data from different sources helps to identify correlations and to study key processes. In this paper, the results of the Weather Research and Forecasting model are visualized for two regions. For this purpose, a continuous workflow that leads from the integration of heterogeneous raw data to 3D visualizations that can be displayed on a desktop computer or in an interactive virtual reality environment is developed. These easy-to-understand visualizations of complex data are the basis for scientific communication and for the evaluation and verification of models as well as for interdisciplinary discussions of the research results.  相似文献   
6.
7.
The Helmstedt‐Staßfurt salt wall is 70 km long, 6–8 km wide and one of the most important diapiric structures in northern Germany, based on the economically significant lignite‐bearing rim synclines. The analysed Schöningen rim syncline, located on the southwestern side of the Helmstedt‐Staßfurt structure, is 8 km long and 3 km wide. The basin‐fill is up to 366 m thick and characterized by 13 major lignite seams with thicknesses between 0.1 and 30 m. The key objectives of this article were to expand on the classical cross‐section based rim syncline analysis by the use of 3D models and basin simulations. Cross‐sections perpendicular to the basin axis indicate that the basin‐fill has a pronounced lenticular shape. This shape varies from more symmetric in the NW to clearly asymmetric in the SE. Isopach maps imply a two‐fold depocentre evolution. The depocentre migrated over time towards the salt wall and also showed some distinct shifts parallel to the salt wall. The basin modelling part of the study was carried out with the software PetroMod®, which focused on the burial history of the rim syncline. Modelling results also show the progressive migration of the rim syncline depocentre towards the salt wall. The present‐day asymmetry of the basin‐fill was already developed in the early phases of rim syncline evolution. The extracted geohistory curve shows initial rapid subsidence between 57 and 50 Ma and more moderate subsidence from 50 to 34 Ma. This pattern is interpreted to reflect salt evacuation from the source layer into the salt wall. The initial salt‐withdrawal rate was rapid, but later decreased probably due to depletion of the source layer.  相似文献   
8.
The article deals with the comparison between 2D and 3D evaluation of surface areas of sculptures. The objects chosen for investigation were Apollo (Carrara Marble, Potsdam Sanssouci), Flora (Laas Marble, Castle and Park Nymphenburg Munich) and Juno (Cotta Sandstone, Baroque Garden Großsedlitz/Dresden). Photographs showing the sculptures from all sides were used for calculating 2D surface areas with AutoCAD 2018 software. 3D models were generated with T-Scan 2 (Steinbichler Company), and 3D surface areas were evaluated with CAD software Geomagic Studio. The results show that 3D total surface area determinations of virtual 3D models are much more precise than 2D determinations on photographs. The values of the total surface area differ significantly. In case of Apollo 2D measurement captures only 66% of the real total surface. For measuring surface roughness, standardized Bosch sandpapers with P classification were used. Microphotographs of marble and sandstone surfaces show the development and the general optical appearance of increasing roughness. As expected, 2D calculation gives smaller values than 3D calculation also in case of surface roughness. In case of Apollo the P400 roughness area calculated with 2D measurement yields only 26% of the real area calculated with 3D. The accuracy of the surface 2D measurement clearly depends on the complexity of the sculpture because undercuts cannot be captured on photographs. It is shown that accurate information about the distribution of damage phenomena helps to improve planning conservation measures.  相似文献   
9.
Analysing the paleostress field in sedimentary basins is important for understanding tectonic processes and the planning of drilling campaigns. The Subhercynian Basin of northern Germany is a perfect natural laboratory to study the paleostress field in a developing foreland basin. The simple layer-cake geometry of the basin-fill is dominated by several piercing and non-piercing salt structures. We derived the paleostress field from the orientation of fracture sets, faults, slickensides and stylolites. On a regional scale, the basin-fill is characterized by a horizontal compressional paleostress vector that is mainly NNE-SSW-oriented, which reflects the Late Cretaceous inversion phase in Central Europe. We show that the local paleostress field is distinctly perturbated due to the salt structures. Along the edge of the salt pillows, the maximum horizontal paleostress vector is deflected by up to 90° from the regional trend. In the case of the Elm salt pillow, it forms a radial pattern. Restoration of balanced cross-sections demonstrates at least 9 % of the shortening of the north-western part of the Subhercynian Basin was achieved by folding. The salt structures in the north-western Subhercynian Basin are the result of varying stress conditions. Initial extension in the Triassic caused first salt movements that prevailed during the Jurassic and Early Cretaceous. Most important is the Late Cretaceous contractional phase that shortened the diapirs and led to the formation of the salt pillows between diapirs due to detachment folding. We derive four main controlling factors for such salt-dominated contractional basins: (1) the wedge-shape basin-fill is the product of the dynamic load at the southern margin of the basin, (2) a basal salt layer fed the diapirs and acted as a detachment horizon during the later shortening, (3) detachment folding was the dominating deformation mechanism during contraction, and (4) the pre-existing diapirs controlled the position of the detachment folds.  相似文献   
10.
The orbital and attitude dynamics of uncontrolled Earth orbiting objects are perturbed by a variety of sources. In research, emphasis has been put on operational space vehicles. Operational satellites typically have a relatively compact shape, and hence, a low area-to-mass ratio (AMR), and are in most cases actively or passively attitude stabilized. This enables one to treat the orbit and attitude propagation as decoupled problems, and in many cases the attitude dynamics can be neglected completely. The situation is different for space debris objects, which are in an uncontrolled attitude state. Furthermore, the assumption that a steady-state attitude motion can be averaged over data reduction intervals may no longer be valid. Additionally, a subset of the debris objects have significantly high area-to-mass ratio (HAMR) values, resulting in highly perturbed orbits, e.g. by solar radiation pressure, even if a stable AMR value is assumed. Note, this assumption implies a steady-state attitude such that the average cross-sectional area exposed to the sun is close to constant. Time-varying solar radiation pressure accelerations due to attitude variations will result in un-modeled errors in the state propagation. This work investigates the evolution of the coupled attitude and orbit motion of HAMR objects. Standardized pieces of multilayer insulation (MLI) are simulated in a near geosynchronous orbits. It is assumed that the objects are rigid bodies and are in uncontrolled attitude states. The integrated effects of the Earth gravitational field and solar radiation pressure on the attitude motion are investigated. The light curves that represent the observed brightness variations over time in a specific viewing direction are extracted. A sensor model is utilized to generate light curves with visibility constraints and magnitude uncertainties as observed by a standard ground based telescope. The photometric models will be needed when combining photometric and astrometric observations for estimation of orbit and attitude dynamics of non-resolved space objects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号