首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
天文学   9篇
  2012年   1篇
  2009年   1篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  2000年   1篇
  1998年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
We present an XMM–Newton observation of the Seyfert–LINER (low-ionization nuclear emission-line region) galaxy NGC 7213. The RGS soft X-ray spectrum is well fitted with a power law plus soft X-ray collisionally ionized thermal plasma  ( kT = 0.18+0.03−0.01 keV)  . We confirm the presence of Fe  i , Fe  xxv and Fe  xxvi Kα emission in the EPIC spectrum and set tighter constraints on their equivalent widths of  82+10−13, 24+9−11  and 24+10−13 eV, respectively. We compare the observed properties together with the inferred mass accretion rate of NGC 7213 with those of other Seyfert and LINER galaxies. We find that NGC 7213 has intermediate X-ray spectral properties lying between those of the weak active galactic nucleus found in the LINER M81 and higher-luminosity Seyfert galaxies. There appears to be a continuous sequence of X-ray properties from the Galactic Centre through LINER galaxies to Seyferts, probably determined by the amount of material available for accretion in the central regions.  相似文献   
2.
3.
4.
5.
Mars environment and magnetic orbiter model payload   总被引:1,自引:0,他引:1  
Mars Environment and Magnetic Orbiter was proposed as an answer to the Cosmic Vision Call of Opportunity as a M-class mission. The MEMO mission is designed to study the strong interconnections between the planetary interior, atmosphere and solar conditions essential to understand planetary evolution, the appearance of life and its sustainability. MEMO provides a high-resolution, complete, mapping of the magnetic field (below an altitude of about 250 km), with an yet unachieved full global coverage. This is combined with an in situ characterization of the high atmosphere and remote sensing of the middle and lower atmospheres, with an unmatched accuracy. These measurements are completed by an improved detection of the gravity field signatures associated with carbon dioxide cycle and to the tidal deformation. In addition the solar wind, solar EUV/UV and energetic particle fluxes are simultaneously and continuously monitored. The challenging scientific objectives of the MEMO mission proposal are fulfilled with the appropriate scientific instruments and orbit strategy. MEMO is composed of a main platform, placed on a elliptical (130 × 1,000 km), non polar (77° inclination) orbit, and of an independent, higher apoapsis (10,000 km) and low periapsis (300 km) micro-satellite. These orbital parameters are designed so that the scientific return of MEMO is maximized, in terms of measurement altitude, local time, season and geographical coverage. MEMO carry several suites of instruments, made of an ‘exospheric-upper atmosphere’ package, a ‘magnetic field’ package, and a ‘low-middle atmosphere’ package. Nominal mission duration is one Martian year.  相似文献   
6.
AXIOM: advanced X-ray imaging of the magnetosphere   总被引:1,自引:0,他引:1  
Planetary plasma and magnetic field environments can be studied in two complementary ways—by in situ measurements, or by remote sensing. While the former provide precise information about plasma behaviour, instabilities and dynamics on local scales, the latter offers the global view necessary to understand the overall interaction of the magnetospheric plasma with the solar wind. Some parts of the Earth’s magnetosphere have been remotely sensed, but the majority remains unexplored by this type of measurements. Here we propose a novel and more elegant approach employing remote X-ray imaging techniques, which are now possible thanks to the relatively recent discovery of solar wind charge exchange X-ray emissions in the vicinity of the Earth’s magnetosphere. In this article we describe how an appropriately designed and located X-ray telescope, supported by simultaneous in situ measurements of the solar wind, can be used to image the dayside magnetosphere, magnetosheath and bow shock, with a temporal and spatial resolution sufficient to address several key outstanding questions concerning how the solar wind interacts with the Earth’s magnetosphere on a global level. Global images of the dayside magnetospheric boundaries require vantage points well outside the magnetosphere. Our studies have led us to propose ‘AXIOM: Advanced X-ray Imaging of the Magnetosphere’, a concept mission using a Vega launcher with a LISA Pathfinder-type Propulsion Module to place the spacecraft in a Lissajous orbit around the Earth–Moon L1 point. The model payload consists of an X-ray Wide Field Imager, capable of both imaging and spectroscopy, and an in situ plasma and magnetic field measurement package. This package comprises a Proton-Alpha Sensor, designed to measure the bulk properties of the solar wind, an Ion Composition Analyser, to characterise the minor ion populations in the solar wind that cause charge exchange emission, and a Magnetometer, designed to measure the strength and direction of the solar wind magnetic field. We also show simulations that demonstrate how the proposed X-ray telescope design is capable of imaging the predicted emission from the dayside magnetosphere with the sensitivity and cadence required to achieve the science goals of the mission.  相似文献   
7.
We examine the XMM X-ray spectrum of the low-ionisation nuclear emission-line region (LINER)-AGN NGC 7213, which is best fit with a power law, Kα emission lines from Fe i, Fe xxv and Fe xxvi and a soft X-ray collisionally ionised thermal plasma with kT = 0.18+0.03−0.01 keV. We find a luminosity of 7× 10−4 LEdd, and a lack of soft X-ray excess emission, suggesting a truncated accretion disc. NGC 7213 has intermediate X-ray spectral properties, between those of the weak AGN found in the LINER M 81 and higher luminosity Seyfert galaxies. This supports the notion of a continuous sequence of X-ray properties from the Galactic Centre through LINER galaxies to Seyferts, likely determined by the amount of material available for accretion in the central regions. This work is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA).  相似文献   
8.
We present XMM–Newton observations of the Seyfert 1 active galactic nucleus (AGN)  H 0557 − 385  . We have conducted a study into the warm absorber present in this source, and using high-resolution Reflection Grating Spectrometer (RGS) data we find that the absorption can be characterized by two phases: a phase with log ionization parameter ξ of 0.50 (where ξ is in units of erg cm s−1) and a column of  0.2 × 1021 cm−2  , and a phase with log ξ of 1.62 and a column of  1.3 × 1022 cm−2  . An iron Kα line is detected. Neutral absorption is also present in the source, and we discuss possible origins for this. On the assumption that the ionized absorbers originate as an outflow from the inner edge of the torus, we use a new method for finding the volume filling factor. Both phases of  H 0557 − 385  have small volume filling factors (≤1 per cent). We also derive the volume filling factors for a sample of 23 AGN using this assumption and for the absorbers with  log ξ > 0.7  , we find reasonable agreement with the filling factors obtained through the alternative method of equating the momentum flow of the absorbers to the momentum loss of the radiation field. By comparing the filling factors obtained by the two methods, we infer that some absorbers with  log ξ < 0.7  occur at significantly larger distances from the nucleus than the inner edge of the torus.  相似文献   
9.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号