首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
地球物理   3篇
天文学   9篇
  2018年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2004年   1篇
  2003年   1篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Bravo  S.  Stewart  G. A.  Blanco-Cano  X. 《Solar physics》1998,179(2):223-235
The Sun's magnetic field extends far from the photosphere, into the corona, defining a magnetically dominated region before being drawn out radially by the solar wind flow. This region, where the internal sources of the solar field dominate the plasma structures and the energetic particle movement, can be properly considered the solar magnetosphere. The magnetic field in this region can be approximately described by models that extrapolate photospheric magnetic field observations under some simplifying assumptions. In this paper we use a potential field model which describes the solar field up to a source surface at 3.25 Rs, where the field is constrained to become radial. We present the variation of the magnitude and inclination of the various multipolar components throughout the solar magnetic cycle that characterise the changes in the structure of the solar magnetosphere over a period of 22 years. We also present some 3-D images of the coronal magnetic structure to show the global evolution of the solar magnetosphere throughout the solar cycle and discuss the importance of taking this structure into account in order to relate interplanetary and solar features.  相似文献   
2.
Interplanetary transients with particular signatures different from the normal solar wind have been observed behind interplanetary shocks and also without shocks. In this paper we have selected four well-known transient interplanetary signatures, namely: magnetic clouds, helium enhancements and bidirectional electron and ion fluxes, found in the solar wind behind shocks, and undertaken a correlative study between them and the corresponding solar observations. We found that although commonly different signatures appear in a single interplanetary transient event, they are not necessarily simultaneous, that is, they may belong to different plasma regions within the ejecta, which suggests that they may be generated by complex processes involving the ejection of plasma from different solar regions. We also found that more than 90% of these signatures correspond to cases when an H flare and the eruption of a filament occurred near solar central meridian between 1 and 4 days before the observation of the disturbance at 1 AU, the highest association being with flares taking place between 2 and 3 days before. The majority of the H flares were also accompanied by soft X-ray events. We also studied the longitudinal distribution of the associated solar events and found that between 80% and 90% of the interplanetary ejecta were associated with solar events within a longitudinal band of ±30° from the solar central meridian. An east-west asymmetry in the associated solar events seems to exist for some of the signatures. We also look for coronal holes adjacent to the site of the explosive event and find that they were present almost in every case.  相似文献   
3.
We study the internal structure of coronal mass ejections (CMEs) using wavelet analysis. We derive wavelet spectra, spatially integrated over regions of interest within LASCO C2 white-light coronographic images. These spectra show an inflection point, which we use to characterize each spectrum. In a diagram of flux vs. spatial scale of the inflection point, we find that the analyzed structures fall into two, distinct groups: a low-flux, small-spatial-scale group (which we call the “homogeneous” type), and a high-flux, larger-spatial-scale group (the “collimated” type). Interestingly, if we study different regions of a given image, all of the structures fall into one of the two groups described above. From a qualitative comparison with the images, it is clear that the two groups identified by the wavelet analysis correspond to two types of morphologies, which are seen as either more-homogeneous or more-collimated structures.  相似文献   
4.
In this work we perform the first multi-spacecraft analysis of two foreshock cavitons observed by the Cluster spacecraft. We also study the characteristics of their surrounding regions. Foreshock cavitons are a relatively new type of phenomena in the Earth's foreshock. They appear in regions deep inside the foreshock and are therefore always immersed in a sea of ULF waves and suprathermal particles. In the observational data the cavitons appear as simultaneous depressions of interplanetary magnetic field and plasma density. The two cavitons presented here have highly structured interiors and exhibit surface irregularities. They propagate sunwards in the reference frame of the solar wind plasma. Since their velocities are smaller than the solar wind velocity, the cavitons are convected towards the Earth by the solar wind flow. Their sizes are comparable to the size of the Earth. We show that the cavitons are different from other foreshock phenomena, such as cavities. The latter are thought to form by thermal expansion due to the excess of thermal pressure caused by intense flux of suprathermal ions in their interiors. Thermal pressure inside the cavitons is the same as in their surroundings, so they cannot form in this way. The proposed mechanism for the caviton formation includes nonlinear interactions between different types of ULF waves deep inside the foreshock.  相似文献   
5.
Bravo  S.  Aguilar  E.  Blanco-Cano  X.  Stewart  G.A. 《Solar physics》1999,188(1):163-168
Among all the signatures of solar ejecta in interplanetary space, magnetic clouds are particularly interesting. We have shown that they are associated with solar mass ejections that involve not only coronal heights, but also chromospheric heights and so, they are almost always associated with low-altitude solar activity such as H flares or filament eruptions. As a magnetic cloud is a very large structure, and not all the ejecta found in the interplanetary medium are clouds, it is interesting to investigate the characteristics of the large-scale coronal magnetic structures in the regions where the activity leading to a cloud takes place. In this paper we use Hoeksema's potential field model of the solar magnetosphere to obtain the magnetic structure of the site of the solar events associated with 35 interplanetary magnetic clouds. The position of the related solar activity was determined from the location of the near-surface solar explosive events (flares and filament eruptions) associated with each cloud, obtained in our previous study. We find that the solar activity associated with interplanetary magnetic clouds occurs in regions of low-altitude, magnetically closed structures lying between higher helmets, or between the highest helmets and coronal holes, where the magnetic field lines are longitudinally oriented.  相似文献   
6.
We have carried out a statistical analysis of the kinematical behavior of small white-light transients (blobs) as tracers of the slow solar wind. The characterization of these faint white-light structures gives us insight on the origin and acceleration of the slow solar wind. The vantage observing points provided by the SECCHI and LASCO instruments on board the STEREO and SOHO spacecraft, respectively, allow us to reconstruct the 3D trajectories of these blob-like features and hence calculate their deprojected kinematical parameters. We have studied 44 blobs revealed in LASCO C2/C3 and SECCHI COR2 data from 2007 to 2008, a period within the solar minimum between Solar Cycles 23 and 24. We found that the blobs propagate along approximately constant position angles with accelerations from 1.40 to \(15.34~\mbox{m}\,\mbox{s}^{-2}\) between 3.42 \(R_{\astrosun }\) and 14.80 \(R_{\astrosun }\), their radial sizes ranging between 0.57 \(R_{\astrosun }\) and 1.69 \(R_{\astrosun }\). We also studied the global corona magnetic field morphology for a subset of blobs using a potential field source surface model for cases where blob detachments persist for two to five days. The study of localized blob releases indicates that these plasma structures start their transit at a distance of \(\sim\,{3.40}~R_{\astrosun }\) and their origin is connected either with the boundaries of weak coronal holes or with streamers at equatorial latitudes.  相似文献   
7.
The two major sources of collisionless shocks in the solar wind are interplanetary coronal mass ejections (ICMEs) and stream interaction regions (SIRs). Previous studies show that some SIR-associated shocks form between Venus and Earth while most form beyond 1 AU. Here we examine the high-resolution magnetometer records from Helios 1 and 2 obtained between 0.28 and 1 AU and from MESSENGER obtained between 0.3 and 0.7 AU to further refine our understanding as to where, and in what context, shocks are formed in the inner solar system. From Helios data (Helios 1 from 1974 to 1981 and Helios 2 from 1976 to 1980), we find there were only a few shocks observed inside the orbit of Venus with the closest shock to the Sun at 0.29 AU. We find that there is a strong correlation between shock occurrence and solar activity as measured by the sunspot number. Most of the shocks inside of the orbit of Venus appear to be associated with ICMEs. Even the ICME-associated shocks are quite weak inside the orbit of Venus. By comparing MESSENGER and STEREO results, from 2007 to 2009, we find that in the deep solar minimum, SIR-driven shocks began to form at about 0.4 AU and increased in number with heliocentric distance.  相似文献   
8.
When the flowing torus plasma encounters the upper atmosphere of Jupiter's moon, Io, newly created ions are rapidly accelerated by the motional electric field. Many of these ions are reneutralized and form a spray of fast neutrals that travel far away from Io before being reionized by photoionization and impact. These ions, now far from Io, are unstable to the generation of ion cyclotron waves. These waves in turn act as a mass spectrometer allowing Galileo magnetic measurements to be used to probe the composition of the atmosphere of Io and how it varies in time and in space. We now have six Galileo passes by Io on which we have measurements with sufficient cadence to examine the ion cyclotron waves. One of these passes, on Galileo's 32nd orbit has not been discussed previously. These passes provide sufficient observations to begin to distinguish the sources of variability. We find that while the atmosphere of Io varies temporally throughout the mission, it also has a spatial variation in composition at any instant of time.  相似文献   
9.
X Blanco-Cano, N Omidi and C T Russell examine the effect of finite ion scale lengths on the formation of planetary magnetospheres.  相似文献   
10.
Comparative study of ion cyclotron waves at Mars, Venus and Earth   总被引:1,自引:0,他引:1  
Ion cyclotron waves are generated in the solar wind when it picks up freshly ionized planetary exospheric ions. These waves grow from the free energy of the highly anisotropic distribution of fresh pickup ions, and are observed in the spacecraft frame with left-handed polarization and a wave frequency near the ion’s gyrofrequency. At Mars and Venus and in the Earth’s polar cusp, the solar wind directly interacts with the planetary exospheres. Ion cyclotron waves with many similar properties are observed in these diverse plasma environments. The ion cyclotron waves at Mars indicate its hydrogen exosphere to be extensive and asymmetric in the direction of the interplanetary electric field. The production of fast neutrals plays an important role in forming an extended exosphere in the shape and size observed. At Venus, the region of exospheric proton cyclotron wave production may be restricted to the magnetosheath. The waves observed in the solar wind at Venus appear to be largely produced by the solar-wind-Venus interaction, with some waves at higher frequencies formed near the Sun and carried outward by the solar wind to Venus. These waves have some similarity to the expected properties of exospherically produced proton pickup waves but are characterized by magnetic connection to the bow shock or by a lack of correlation with local solar wind properties respectively. Any confusion of solar derived waves with exospherically derived ion pickup waves is not an issue at Mars because the solar-produced waves are generally at much higher frequencies than the local pickup waves and the solar waves should be mostly absorbed when convected to Mars distance as the proton cyclotron frequency in the plasma frame approaches the frequency of the solar-produced waves. In the Earth’s polar cusp, the wave properties of ion cyclotron waves are quite variable. Spatial gradients in the magnetic field may cause this variation as the background field changes between the regions in which the fast neutrals are produced and where they are re-ionized and picked up. While these waves were discovered early in the magnetospheric exploration, their generation was not understood until after we had observed similar waves in the exospheres of Mars and Venus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号