首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   3篇
地球物理   8篇
天文学   37篇
  2018年   2篇
  2014年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   6篇
  2006年   1篇
  2005年   6篇
  2004年   4篇
  2003年   5篇
  2002年   3篇
  2001年   5篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
排序方式: 共有45条查询结果,搜索用时 15 毫秒
1.
We report the first detection, with Chandra , of X-ray emission from the jet of the powerful narrow-line radio galaxy 3C 346. X-rays are detected from the bright radio and optical knot at which the jet apparently bends by approximately 70°. The Chandra observation also reveals a bright galaxy-scale atmosphere within the previously known cluster and provides a good X-ray spectrum for the bright core of 3C 346. The X-ray emission from the knot is synchrotron radiation, as seen in lower-power sources. In common with these sources, there is evidence of morphological differences between the radio/optical and X-ray structures, and the spectrum is inconsistent with a one-component continuous-injection model. We suggest that the X-ray-bright knot is associated with a strong oblique shock in a moderately relativistic, light jet, at ∼ 20° to the line of sight, and that this shock is caused by the jet interacting with the wake in the cluster medium behind the companion galaxy of 3C 346. The general jet curvature can result from pressure gradients in the cluster atmosphere.  相似文献   
2.
Chandra X-ray Observatory observations of the powerful, peculiar radio galaxy 3C 123 have resulted in an X-ray detection of the bright eastern hotspot, with a 1-keV flux density of ∼5 nJy. The X-ray flux and spectrum of the hotspot are consistent with the X-rays being inverse-Compton scattering of radio synchrotron photons by the population of electrons responsible for the radio emission ('synchrotron self-Compton emission') if the magnetic fields in the hotspot are close to their equipartition values. 3C 123 is thus the third radio galaxy to show X-ray emission from a hotspot which is consistent with being in equipartition. Chandra also detects emission from a moderately rich cluster surrounding 3C 123, with L X(2–10 keV)=2×1044 erg s−1 and kT ∼5 keV, and absorbed emission from the active nucleus, with an inferred intrinsic column density of 1.7×1022 cm−2 and an intrinsic 2–10 keV luminosity of 1044 erg s−1.  相似文献   
3.
4.
The SHETRAN physically based, spatially distributed model is used to investigate the scaling relationship linking specific sediment yield to river basin area, for two contrasting topographies of upland and more homogeneous terrain and as a function of sediment source, land use and rainfall distribution. Modelling enables the effects of the controls to be examined on a systematic basis, while avoiding the difficulties associated with the use of field data (which include limited data, lack of measurements for nested basins and inability to isolate the effects of individual controls). Conventionally sediment yield is held to decrease as basin area increases, as the river network becomes more remote from the headwater sediment sources (an inverse relationship). However, recent studies have reported the opposite variation, depending on the river basin characteristics. The simulation results are consistent with these studies. If the sediment is supplied solely from hillslope erosion (no channel bank erosion) then, with uniform land use, sediment yield either decreases or is constant as area increases. The downstream decrease is accentuated if rainfall (and thence erosion) is higher in the headwaters than at lower elevations. Introducing a non‐uniform land use (e.g. forest at higher elevations, wheat at lower elevations) can reverse the trend, so that sediment yield increases downstream. If the sediment is supplied solely from bank erosion (no hillslope erosion), the sediment yield increases downstream for all conditions. The sediment yield/basin area relationship can thus be inverse or direct, depending on basin characteristics. There still remains, therefore, considerable scope for defining a universal scaling law for sediment yield. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
5.
We have used a deep Chandra observation of the central regions of the twin-jet Fanaroff–Riley class I (FRI) radio galaxy 3C 31 to resolve the thermal X-ray emission in the central few kpc of the host galaxy, NGC 383, where the jets are thought to be decelerating rapidly. This allows us to make high-precision measurements of the density, temperature and pressure distributions in this region, and to show that the X-ray emitting gas in the centre of the galaxy has a cooling time of only  5×107 yr  . In a companion paper, these measurements are used to place constraints on models of the jet dynamics.
A previously unknown one-sided X-ray jet in 3C 31, extending up to 8 arcsec from the nucleus, is detected and resolved. Its structure and steep X-ray spectrum are similar to those of X-ray jets known in other FRI sources, and we attribute the radiation to synchrotron emission from a high-energy population of electrons. In situ particle acceleration is required in the region of the jet where bulk deceleration is taking place.
We also present X-ray spectra and luminosities of the galaxies in the Arp 331 chain of which NGC 383 is a member. The spectrum and spatial properties of the nearby bright X-ray source 1E 0104+3153 are used to argue that the soft X-ray emission is mostly due to a foreground group of galaxies rather than to the background broad absorption-line quasar.  相似文献   
6.
Our Chandra observation of the FR I radio galaxy 3C 66B has resulted in the first detection of an X-ray counterpart to the previously known radio, infrared and optical jet. The X-ray jet is detected up to 7 arcsec from the core and has a steep X-ray spectrum, α ≈1.3±0.1 . The overall X-ray flux density and spectrum of the jet are consistent with a synchrotron origin for the X-ray emission. However, the inner knot in the jet has a higher ratio of X-ray to radio emission than the others. This suggests that either two distinct emission processes are present or differences in the acceleration mechanism are required; there may be a contribution to the emission from the inner knot from an inverse Compton process or it may be the site of an early strong shock in the jet. The peak of the brightest radio and X-ray knot is significantly closer to the nucleus in the X-ray than in the radio, which may suggest that the knots are privileged sites for high-energy particle acceleration. 3C 66B's jet is similar both in overall spectral shape and in structural detail to those in more nearby sources such as M87 and Centaurus A.  相似文献   
7.
We report results of an 18-ks exposure with the ACIS instrument on Chandra of the powerful z =0.62 radio galaxy 3C 220.1. The X-ray emission separates into cluster gas of emission-weighted kT ∼5 keV , 0.7–12 keV luminosity (to a radius of 45 arcsec) of 5.6×1044 erg s−1 and unresolved emission (coincident with the radio core). While the extended X-ray emission is clearly thermal in nature, a straightforward cooling-flow model, even in conjunction with a point-source component, is a poor fit to the radial profile of the X-ray emission. This is despite the fact that the measured properties of the gas suggest a massive cooling flow of ∼130 M yr−1, and the data show weak evidence for a temperature gradient. The central unresolved X-ray emission has a power-law spectral energy index α ∼0.7 and 0.7–12 keV luminosity of 1045 erg s−1, and any intrinsic absorption is relatively small. The two-point spectrum of the core emission between radio and X-ray energies has α rx=0.75 . Since this is a flatter spectrum than seen in other sources where the X-ray emission is presumed to be radio-related, regions close to the active galactic nucleus (AGN) in this source may dominate the central X-ray output, as is believed to be the case for lobe-dominated quasars. Simple unification models would be challenged if this were found to be the case for a large fraction of high-power radio galaxies.  相似文献   
8.
9.
The observed properties of astrophysical jets are reviewed, and the techniques used to estimate the parameters of the underlying beams are described. This information is then used in a theoretical treatement of the Kelvin-Helmholtz instability of the flows, and the relevance of this instability to the persistence of the observed structures is emphasised.  相似文献   
10.
Heavy winter rainfall produces double‐peak hydrographs at the Slapton Wood catchment, Devon, UK. The first peak is saturation‐excess overland flow in the hillslope hollows and the second (i.e. the delayed peak) is subsurface stormflow. The physically‐based spatially‐distributed model SHETRAN is used to try to improve the understanding of the processes that cause the double peaks. A three‐stage (multi‐scale) approach to calibration is used: (1) water balance validation for vertical one‐dimensional flow at arable, grassland and woodland plots; (2) two‐dimensional flow for cross‐sections cutting across the stream valley; and (3) three‐dimensional flow in the full catchment. The main data are for rainfall, stream discharge, evaporation, soil water potential and phreatic surface level. At each scale there was successful comparison with measured responses, using as far as possible parameter values from measurements. There was some calibration but all calibrated values at one scale were used at a larger scale. A large proportion of the subsurface runoff enters the stream from three dry valleys (hillslope hollows), and previous studies have suggested convergence of the water in the three large hollows as being the major mechanism for the production of the delayed peaks. The SHETRAN modelling suggests that the hillslopes that drain directly into the stream are also involved in producing the delayed discharges. The model shows how in the summer most of the catchment is hydraulically disconnected from the stream. In the autumn the catchment eventually ‘wets up’ and shallow subsurface flows are produced, with water deflected laterally along the soil‐bedrock interface producing the delayed peak in the stream hydrograph. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号