首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
天文学   4篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  1998年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
2.
The formation of molecular hydrogen  (H2)  in the interstellar medium takes place on the surfaces of dust grains. Hydrogen molecules play a role in gas-phase reactions that produce other molecules, some of which serve as coolants during gravitational collapse and star formation. Thus, the evaluation of the production rate of hydrogen molecules and its dependence on the physical conditions in the cloud are of great importance. Interstellar dust grains exhibit a broad size distribution in which the small grains capture most of the surface area. Recent studies have shown that the production efficiency strongly depends on the grain composition and temperature as well as on its size. In this paper, we present a formula that provides the total production rate of  H2  per unit volume in the cloud, taking into account the grain composition and temperature as well as the grain size distribution. The formula agrees very well with the master equation results. It shows that for a physically relevant range of grain temperatures, the production rate of  H2  is significantly enhanced due to their broad size distribution.  相似文献   
3.
Recent laboratory experiments on interstellar dust analogues have shown that H2 formation on dust-grain surfaces is efficient in a range of grain temperatures below 20 K. These results indicate that surface processes may account for the observed H2 abundance in cold diffuse and dense clouds. However, high abundances of H2 have also been observed in warmer clouds, including photon-dominated regions (PDRs), where grain temperatures may reach 50 K, making the surface processes extremely inefficient. It was suggested that this apparent discrepancy can be resolved by chemisorption sites. However, recent experiments indicate that chemisorption processes may not be efficient at PDR temperatures. Here we consider the effect of grain porosity on H2 formation, and analyse it using a rate-equation model. It is found that porosity extends the efficiency of the recombination process to higher temperatures. This is because H atoms that desorb from the internal surfaces of the pores may re-adsorb many times and thus stay longer on the surface. However, this porosity-driven extension may enable efficient H2 formation in PDRs only if porosity also contributes to significant cooling of the grains, compared to non-porous grains.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号